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Course schedule 
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1. Optimal Control Problems (OCP): review of ordinary differential equations; 
existence of solutions to OCP.

2. Optimality Conditions for OCP: the Maximum Principle and structure of optimal 
controls; application to reusable rocket landing.

3. Python Session 1: real-world reusable rocket landing.

4. Python Session 2: training of neural networks through NeuralODE
(this application might change depending on the course first outcomes).

5. Final presentation of the results.
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1. Optimal Control Problems (OCP): review of ordinary differential equations; 
existence of solutions to OCP.

2. Optimality Conditions for OCP: the Maximum Principle and structure of optimal 
controls; application to reusable rocket landing (today).

3. Python Session 1: real-world reusable rocket landing.

4. Python Session 2: training of neural networks through NeuralODE
(this application might change depending on the course first outcomes).

5. Final presentation of the results.
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1. We studied conditions under which 
ODE has a unique sol.                   
for any fixed                              .                         

2. We studied conditions under which 
feasible OCP have at least one 
optimal solution                              , 
with corresponding optimal trajectory                        
.

3. Today’s topic: characterize optimal 
solutions                               to OCP 
via necessary conditions of 
optimality.

Assumed from now on!
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Lecture 2 - Characterize the structure of solutions to OCP



Today’s detailed schedule

1. Necessary conditions for optimality: the Pontryagin Maximum Principle (PMP).

2. Learn how to apply the PMP through simple optimal control problems.

3. Characterize optimal controls for the reusable rocket landing problem.
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where

Recall OCP:

Key insight: OCP is a (infinite-dimensional) constrained optimization problem.

Let us introduce such conditions for optimality for 
OCP, and characterize optimal controls!
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where

Recall OCP:

1.   Let us introduce the Hamiltonian: New variables: multipliers!

2.   For any fixed                             (and                       ), and fixed                                , 
a    the adjoint vector is the continuous curve                        sol. to the adjoint system:

Key comments:

a. 

b.   Backward linear ODE: unique 
ffffff solution exists  
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3.   Theorem PMP (necessary conditions for optimality).
Let                be an optimal control-trajectory pair solution to OCP. There exists a 
pair                                               such that the following conditions hold true:
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3.   Theorem PMP (necessary conditions for optimality).
Let                be an optimal control-trajectory pair solution to OCP. There exists a 
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3.   Theorem PMP (necessary conditions for optimality).
Let                be an optimal control-trajectory pair solution to OCP. There exists a 
pair                                               such that the following conditions hold true:
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3.   Theorem PMP (necessary conditions for optimality).
Let                be an optimal control-trajectory pair solution to OCP. There exists a 
pair                                               such that the following conditions hold true:

c.   Maximality condition: 

a.   Adjoint and adjoint system: 

d.   Final condition (only if      is free!!!): 

Used to find 
simpler forms 
of          .



Today’s detailed schedule

1. Necessary conditions for optimality: the Pontryagin Maximum Principle (PMP).

2. Learn how to apply the PMP through simple optimal control problems.

3. Characterize optimal controls for the reusable rocket landing problem.
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2.   Given the Hamiltonian                                                                   , there exist a  

a    vector                 and an adjoint                               satisfying the adjoint system:
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2.   Given the Hamiltonian                                                                   , there exist a  

a    vector                 and an adjoint                               satisfying the adjoint system:

In particular, we compute
a.
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In particular, we compute
a.
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2.   Given the Hamiltonian                                                                   , there exist a  

a    vector                 and an adjoint                               satisfying the adjoint system:

In particular, we compute
a.

b.

Thus:
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3.   Given the Hamiltonian                                                                    and the adjoint 

a                                                                       , solve the maximality condition

and the final condition (only if       is free!)
Final time is 
fixed in this 
example!

Need to find solutions to the finite-dimensional optimization:

where
Solutions depend 

on the value of      !
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Let us solve: 
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a.   Case

Maximizing a parabola: 
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Luckily,                                   never happens. Indeed, from 
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Let us solve: 

b.   Case
Maximizing a straight line in [-1,1]

What if                    ???

Luckily,                                   never happens. Indeed, from 
we would have                             , and thus                                                            . 
Finally, we would obtain                                                           , contradiction! 
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Minimal energy double integrator - Used in electronic circuit eco-phasing

We have finally showed that optimal controls for this OCP can only take two forms:
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with

Minimal energy double integrator - Used in electronic circuit eco-phasing

We have finally showed that optimal controls for this OCP can only take two forms:

OR

Just find                                                                
numerically!!! 
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Existence of solutions to OCP - Examples
Minimal energy reusable rocket landing

It’s your turn: By assuming that this OCP has at least one optimal control-trajectory 
pair               , apply the PMP and show            is of the form (20/30 minutes):
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Existence of solutions to OCP - Examples
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It’s your turn: By assuming that this OCP has at least one optimal control-trajectory 
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Existence of solutions to OCP - Examples
Minimal energy reusable rocket landing

It’s your turn: By assuming that this OCP has at least one optimal control-trajectory 
pair               , apply the PMP and show            is of the form (20/30 minutes):

Solution: See the blackboard.

OR



Today’s detailed schedule

1. Necessary conditions for optimality: the Pontryagin Maximum Principle (PMP).

2. Learn how to apply the PMP through simple optimal control problems.

3. Characterize optimal controls for the reusable rocket landing problem.
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Characterize optimal controls for rocket landing
3.   The Hamiltonian                                                                                  yields solving 

Change of variables:

What if                 ???

From now on, we assume

We define

(if not, similar results but complex study)
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Characterize optimal controls for rocket landing
4.   Luckily, it can never happen                                                  . Otherwise:

(details are on the blackboard)

(details are on the blackboard)

In turn, we have 
discovered optimal 
controls are bang-bang: 



83

Characterize optimal controls for rocket landing
5.   We can more carefully characterize such optimal controls.



84

Characterize optimal controls for rocket landing
5.   We can more carefully characterize such optimal controls.

a.   Indeed, the adjoint system yields



85

Characterize optimal controls for rocket landing
5.   We can more carefully characterize such optimal controls.

a.   Indeed, the adjoint system yields

In particular, the function                                                       is non-decreasing.



b.   From                                     , it follows that           is either always non-negative 

a    or it changes sign at maximum once (from - to +).

86

Characterize optimal controls for rocket landing
5.   We can more carefully characterize such optimal controls.

a.   Indeed, the adjoint system yields

In particular, the function                                                       is non-decreasing.



b.   From                                     , it follows that           is either always non-negative 

a    or it changes sign at maximum once (from - to +).

87

Characterize optimal controls for rocket landing
5.   We can more carefully characterize such optimal controls.

a.   Indeed, the adjoint system yields

In particular, the function                                                       is non-decreasing.

c.   In addition, the adjoint system yields 

for long



b.   From                                     , it follows that           is either always non-negative 

a    or it changes sign at maximum once (from - to +).

88

Characterize optimal controls for rocket landing
5.   We can more carefully characterize such optimal controls.

a.   Indeed, the adjoint system yields

In particular, the function                                                       is non-decreasing.

c.   In addition, the adjoint system yields 

for long



b.   From                                     , it follows that           is either always non-negative 

a    or it changes sign at maximum once (from - to +).

89

Characterize optimal controls for rocket landing
5.   We can more carefully characterize such optimal controls.

a.   Indeed, the adjoint system yields

In particular, the function                                                       is non-decreasing.

c.   In addition, the adjoint system yields 

for long



b.   From                                     , it follows that           is either always non-negative 

a    or it changes sign at maximum once (from - to +).

90

Characterize optimal controls for rocket landing
5.   We can more carefully characterize such optimal controls.

a.   Indeed, the adjoint system yields

In particular, the function                                                       is non-decreasing.

c.   In addition, the adjoint system yields 

for long



A.           always non-negative.

91

Characterize optimal controls for rocket landing
5.   We can more carefully characterize such optimal controls.

d.   Summary:

for long enough      .C.

B. Or            changes sign at maximum once (from - to +).



A.           always non-negative.

92
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Characterize optimal controls for rocket landing
5.   We can more carefully characterize such optimal controls.

d.   Summary:

for long enough      .C.

D.           is always positive.

B. Or            changes sign at maximum once (from - to +).

E.  Or            is first positive and then negative, and possibly positive again.

e.   We conclude:
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Characterize optimal controls for rocket landing
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problem: just find                             and                         numerically!!!
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Characterize optimal controls for rocket landing

Next lecture!

We have reduced the problem to a finite-dimensional optimization 
problem: just find                             and                         numerically!!!

Optimal controls are of the form (under some mild assumptions):

Minimal fuel consumption reusable rocket landing (with fixed or free final time)
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1. Optimal Control Problems (OCP): review of ordinary differential equations; 
existence of solutions to OCP.

2. Optimality Conditions for OCP: the Maximum Principle and structure of optimal 
controls; application to reusable rocket landing.

3. Python Session 1: real-world reusable rocket landing (next class).

4. Python Session 2: training of neural networks through NeuralODE
(this application might change depending on the course first outcomes).

5. Final presentation of the results.



Bring your 
laptops with 

Conda installed!!!
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1. Optimal Control Problems (OCP): review of ordinary differential equations; 
existence of solutions to OCP.

2. Optimality Conditions for OCP: the Maximum Principle and structure of optimal 
controls; application to reusable rocket landing.

3. Python Session 1: real-world reusable rocket landing (next class).

4. Python Session 2: training of neural networks through NeuralODE
(this application might change depending on the course first outcomes).

5. Final presentation of the results.



End of lecture 2 

Questions?
Otherwise, see you in two weeks!
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