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CONTINUITY OF PONTRYAGIN EXTREMALS WITH RESPECT
TO DELAYS IN NONLINEAR OPTIMAL CONTROL\ast 
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Abstract. Consider a general nonlinear optimal control problem in finite dimension, with con-
stant state and/or control delays. By the Pontryagin maximum principle, any optimal trajectory is
the projection of a Pontryagin extremal. We establish that, under appropriate assumptions which
are essentially sharp, Pontryagin extremals depend continuously on the parameters delays, for ad-
equate topologies. The proof of the continuity of the trajectory and of the control is quite easy;
however, for the adjoint vector, the proof requires a much finer analysis. The continuity property of
the adjoint vector with respect to the parameter delays opens a new perspective for the numerical
implementation of indirect methods, such as the shooting method.
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1. Introduction. This paper is devoted to establishing continuity properties
with respect to delays of Pontryagin extremals related to nonlinear optimal control
problems with state and control constant delays. Pontryagin extremals are obtained
by applying the Pontryagin maximum principle to an optimal control problem, thus
providing first-order necessary conditions for optimality.

Historically, the maximum principle has been developed originally for optimal
control problems without delays (see, e.g., [32]). The paper [25] was the first to
provide a maximum principle for optimal control problems with constant state delays
while [21] obtains the same conditions by a simple substitution-like method. In [26]
a similar result is achieved for control problems with pure control delays. In [24, 38],
necessary conditions are obtained for optimal control problems with multiple constant
delays in state and control variables. Moreover, [6, 4] derive maximum principles for
control systems with either time- or state-dependent delays. Finally, [18, 19] give
necessary conditions for optimal control problems with delays and mixed constraints.

When delays are considered, the maximum principle provides extremals satisfy-
ing adjoint equations, the maximality condition, and transversality conditions which
depend directly on the value of the delay. Therefore, it seems legitimate to wonder
how these extremals depend on the parameter delay. In the present paper, we pro-
vide sufficient conditions ensuring continuity (for suitable topologies) of Pontryagin
extremals w.r.t. delays. Continuity properties have useful numerical applications in
solving optimal control problems with delays by shooting methods (as we describe in
section 2.4). The main result presented in this paper is roughly the following:
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Consider an optimal control problem with delays. Under the main assump-
tion that optimal controls are either time continuous or purely bang-bang,
Pontryagin extremals are strongly continuous w.r.t. delays, for appropriate
topologies.

The assumption that optimal controls are bang-bang is sharp, in the sense that,
whenever singular arcs arise, the continuity of Pontryagin extremals w.r.t. delays may
fail to be satisfied in strong topology, although it is always satisfied in a weak sense.
(A counterexample is provided in section 2.3.)

In the literature, to our knowledge, it seems that this topic has been little ad-
dressed. The main works addressing the regularity of extremals w.r.t. time lag vari-
ations develop sensibility analysis-type arguments (see, e.g., [34, 29, 30]). Our ap-
proach developed in this paper does not require any differentiability properties of the
extremals. More precisely, the main continuity result (see Theorem 2.1) is achieved
by analyzing the geometric deformation of Pontryagin cones, i.e., the sets containing
all variation vectors, under small perturbations of the delays. This geometric analysis
is challenging and requires a modified conic implicit function theorem which relies on
the continuous dependence of parameters (represented here by delays).

The paper is organized as follows. In section 2, we recall the maximum principle
formulation for optimal control problems with delays, stating then the main theorem
for the continuity of Pontryagin extremals w.r.t. delays. Section 2.4 contains an
extension of such continuity property to implement robust shooting methods to solve
optimal control problems with delays. In section 3, we provide the proof of our main
result, which goes in three steps. Robustness of controllability properties of problems
with delays are addressed first by means of an implicit function theorem in which
parameters and restriction to dense subsets are considered. In a second step, the
existence of solutions of optimal control problems with delays and their continuity
w.r.t. delays are established. The last step is the more difficult and technical: we
prove the continuity of the adjoint vectors w.r.t. delays. Finally, section 4 provides
conclusions and several perspectives.

2. Continuity of Pontryagin extremals w.r.t. delays.

2.1. The maximum principle for optimal control problems with delays.
Let n, m be positive integers, \Delta a positive real number, and U \subseteq \BbbR m a measurable
subset and define an initial state function \phi 1(\cdot ) \in C0([ - \Delta , 0],\BbbR n) and an initial
control function \phi 2(\cdot ) \in L\infty ([ - \Delta , 0], U). For \tau = (\tau 0, \tau 1, \tau 2) \in [0,\Delta ]3 and tf > 0,
consider the following nonlinear control system on \BbbR n with constant delays:

(1)

\left\{   \.x(t) = f(t, t - \tau 0, x(t), x(t - \tau 1), u(t), u(t - \tau 2)), t \in [0, tf ],

x(t) = \phi 1(t) , u(t) = \phi 2(t) , t \in [ - \Delta , 0], u(\cdot ) \in L\infty ([ - \Delta , tf ], U),

where f(t, s, x, y, u, v) is continuous and (at least) C2 w.r.t. its second, third, and
fourth variables. Control systems (1) play an important role describing many relevant
phenomena in physics, biology, engineering, and economics (see, e.g., [28]).

LetMf be a subset of \BbbR n. Assume thatMf is reachable from \phi 1(\cdot ) for the control
system (1), that is, for every \tau = (\tau 0, \tau 1, \tau 2) \in [0,\Delta ]3, there exist a final time tf and
a control u(\cdot ) \in L\infty ([ - \Delta , tf ], U), such that the trajectory x(\cdot ), solution of (1) in
[ - \Delta , tf ], satisfies x(tf ) \in Mf . Such a control is called admissible and we denote by
\scrU \tau 
tf ,\BbbR m the set of all admissible controls of (1) defined in [ - \Delta , tf ] taking their values

in \BbbR m, while \scrU \tau 
tf ,U

denotes the set of all admissible controls of (1) defined in [ - \Delta , tf ]

taking their values in U . Therefore, \scrU \tau 
\BbbR m =

\bigcup 
tf>0 \scrU \tau 

tf ,\BbbR m and \scrU \tau 
U =

\bigcup 
tf>0 \scrU \tau 

tf ,U
.
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Given constant delays \tau = (\tau 0, \tau 1, \tau 2) \in [0,\Delta ]3, we consider the optimal control
problem with delays (OCP)\tau consisting in steering the control system (1) toMf , while
minimizing the cost function

(2) C\tau (tf , u) =

\int tf

0

f0(t, t - \tau 0, x(t), x(t - \tau 1), u(t), u(t - \tau 2)) dt,

where f0(t, s, x, y, u, v) is continuous and (at least) C2 w.r.t. its second, third, and
fourth variables. We study either fixed or free final time problems (OCP)\tau .

In the context of the present work, we focus on two particular classes of problems.
We speak of problems (OCP)\tau with pure state delays when f and f0 do not depend

on v, i.e., \partial f
\partial v = \partial f0

\partial v = 0. We say that the optimal control problem (OCP)\tau is affine
when f and f0 are affine in (u, v), i.e.,

f(t, s, x, y, u, v) = f0(t, s, x, y) + u \cdot f1(t, s, x, y) + v \cdot f2(t, s, x, y),
f0(t, s, x, y, u, v) = f00 (t, s, x, y) + u \cdot f01 (t, s, x, y) + v \cdot f02 (t, s, x, y).

(3)

Assume that (x\tau (\cdot ), u\tau (\cdot )) is an optimal solution for (OCP)\tau with related optimal
final time t\tau f and define the Hamiltonian related to problem (OCP)\tau by

H(t, s, x, y, p, p0, u, v) = \langle p, f(t, s, x, y, u, v)\rangle + p0f0(t, s, x, y, u, v).

According to the maximum principle (see, e.g., [19, 7]), there exists a nontrivial couple
(p\tau (\cdot ), p0\tau ) \not = 0, where p0\tau \leqslant 0 is constant and p\tau : [0, t\tau f ] \rightarrow \BbbR n (adjoint vector) is abso-

lutely continuous, such that the so-called Pontryagin extremal (x\tau (\cdot ), p\tau (\cdot ), p0\tau , u\tau (\cdot ))
satisfies, almost everywhere in [0, t\tau f ], the adjoint equations\left\{                       

\.x\tau (t) =
\partial H

\partial p
(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), p\tau (t), p

0
\tau , u\tau (t), u\tau (t - \tau 2)),

\.p\tau (t) =  - \partial H
\partial x

(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), p\tau (t), p
0
\tau , u\tau (t), u\tau (t - \tau 2))

 - 1[0,t\tau f - \tau 1](t)
\partial H

\partial y
(t+ \tau 1, t+ \tau 1  - \tau 0, x\tau (t+ \tau 1), x\tau (t), p\tau (t+ \tau 1),

p0\tau , u\tau (t+ \tau 1), u\tau (t+ \tau 1  - \tau 2))

(4)

and the following maximality condition: for every u \in U

H(t, t - \tau 0, x\tau (t),x\tau (t - \tau 1), p\tau (t), p
0
\tau , u\tau (t), u\tau (t - \tau 2))(t)

+ 1[0,t\tau f - \tau 2](t)H(t+ \tau 2, t+ \tau 2  - \tau 0, x\tau (t+ \tau 2), x\tau (t+ \tau 2  - \tau 1),

p\tau (t+ \tau 2), p0\tau , u\tau (t+ \tau 2), u\tau (t))

\geqslant H(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), p\tau (t), p
0
\tau , u, u\tau (t - \tau 2))

+ 1[0,t\tau f - \tau 2](t)H(t+ \tau 2, t+ \tau 2  - \tau 0, x\tau (t+ \tau 2), x\tau (t+ \tau 2  - \tau 1),

p\tau (t+ \tau 2), p0\tau , u\tau (t+ \tau 2), u).

(5)

Furthermore, if Mf is a submanifold of \BbbR n, locally around x\tau (t
\tau 
f ), then the adjoint

vector can be chosen in order to satisfy

p\tau (t
\tau 
f ) \bot Tx\tau (t\tau f )

Mf(6)

and, moreover, if the final time t\tau f is free and both t\tau f , t
\tau 
f  - \tau 2 are Lebesgue points for
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u\tau (\cdot ), the extremal (x\tau (\cdot ), p\tau (\cdot ), p0\tau , u\tau (\cdot )) satisfies the following final condition:

H(t\tau f , t
\tau 
f  - \tau 0, x\tau (t

\tau 
f ), x\tau (t

\tau 
f  - \tau 1), p\tau (t

\tau 
f ), p

0
\tau , u\tau (t

\tau 
f ), u\tau (t

\tau 
f  - \tau 2)) = 0.(7)

(Recall that any measurable function is a.e. approximately continuous; see, e.g., [15].)
When t\tau f or t\tau f  - \tau 2 are not Lebesgue points, (7) can be generalized (see, e.g., [7]).

The extremal (x\tau (\cdot ), p\tau (\cdot ), p0\tau , u\tau (\cdot )) is said to be normal when p0\tau \not = 0, and in that
case we set p0\tau =  - 1. Otherwise, it is said to be abnormal.

2.2. The main result: Continuity properties of Pontryagin extremals.
Our main result establishes that, under appropriate assumptions, Pontryagin ex-
tremals are continuous w.r.t. delays for appropriate topologies. The most challenging
issue is the continuous dependence of adjoint vectors w.r.t. delays. To prove this fact,
we establish continuity w.r.t. delays of Pontryagin cones related to the maximum
principle formulation with delays.

We will treat separately the case of pure state delays. Treating control delays
happens to be more complex, especially for the existence of optimal controls (see
Theorem 2.1). Indeed, a standard approach to prove existence would consider usual
Filippov's assumptions (as in the classical reference [16]) which, in the case of control
delays, must be extended. In particular, using the Guinn's reduction (see, e.g., [21]),
the control system with delays is equivalent to a nondelayed system with a larger
number of variables depending on the value of \tau 2. Such extension was used in [31].
However, the usual assumption on the convexity of the epigraph of the extended
dynamics is not sufficient to prove Lemma 2.1 in [31] (see also section 3.3.2).

Fix constant delays \tau 0 = (\tau 00 , \tau 
1
0 , \tau 

2
0 ) \in [0,\Delta ]3 and let (x\tau 0(\cdot ), p\tau 0(\cdot ), p0\tau 0 , u\tau 0(\cdot ))

be a Pontryagin extremal for (OCP)\tau 0 satisfying (4)--(7), where (x\tau 0(\cdot ), u\tau 0(\cdot )) is an
optimal solution for (OCP)\tau 0 in [ - \Delta , t\tau 0f ]. We make the following assumptions:

General assumptions.

(A)

\left\{                                       

(A1) U is compact and convex in \BbbR m, and Mf is a compact submanifold of
\BbbR n.

(A2) The optimal control problem with delays (OCP)\tau 0 has a unique solu-
tion, denoted (x\tau 0(\cdot ), u\tau 0(\cdot )), defined in a neighborhood of [ - \Delta , t\tau 0f ].

(A3) The optimal trajectory x\tau 0(\cdot ) has a unique extremal lift (up to a
multiplicative scalar) defined in [0, t\tau 0f ], which is normal, denoted
(x\tau 0(\cdot ), p\tau 0(\cdot ), - 1, u\tau 0(\cdot )), solution of the maximum principle.

(A4) There exists a positive real number b such that, for every \tau =
(\tau 0, \tau 1, \tau 2) \in [0,\Delta ]3 and every v(\cdot ) \in \scrU \tau 

U , denoting x\tau ,v(\cdot ) the related
trajectory arising from dynamics (1) with final time t\tau ,vf , one has

\forall t \in [ - \Delta , t\tau ,vf ] : t\tau ,vf + \| x\tau ,v(t)\| \leqslant b.

Additional assumptions in the case of pure state delays.

(B)

\left\{                     

(B1) For every \tau , every optimal control u\tau (\cdot ) of (OCP)\tau is continuous.
(B2) The sets\bigl\{ \bigl( 

f(t, s, x, y, u), f0(t, s, x, y, u) + \gamma 
\bigr) 

: u \in U , \gamma \geqslant 0
\bigr\} 
,\biggl\{ \biggl( 

f(t, t, x, x, u), f0(t, t, x, x, u) + \gamma ,
\partial \~f

\partial x
(t, t, x, x, u),

\partial \~f

\partial y
(t, t, x, x, u)

\biggr) 
: u \in U, \gamma \geqslant 0

\biggr\} 
are convex for every t, s \in \BbbR , x, y \in \BbbR n, where we denote \~f = (f, f0).
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Additional assumptions in the case of delays in state and control vari-
ables.

(C)

\left\{         
(C1) The considered optimal control problems are affine, i.e., we have (3).
(C2) The final time tf is fixed.
(C3) At least one of the following two conditions is satisfied:

\bullet For every \tau , every optimal control u\tau (\cdot ) of (OCP)\tau is continuous.
\bullet The control u\tau 0(\cdot ) takes its values at extremal points of U , a.e.

Theorem 2.1.
\bullet Optimal control problems with pure state delays:
Denote B+

\varepsilon (\tau ) = B\varepsilon (\tau ) \cap \BbbR 2
+. Under assumptions (A) and (B) the following

hold:
1. There exists \varepsilon 0 > 0 such that, for every couple of delays \tau = (\tau 0, \tau 1)

satisfying \| \tau  - \tau 0\| < \varepsilon 0, each problem (OCP)\tau has at least one optimal
solution (x\tau (\cdot ), u\tau (\cdot )) in [ - \Delta , t\tau f ], every extremal lift of which is normal.
Moreover, if the final time is fixed, then t\tau f = t\tau 0f for every \tau .

2. The mappings B+
\varepsilon 0(\tau 0) \ni \tau \mapsto \rightarrow x\tau (\cdot )1 and B+

\varepsilon 0(\tau 0) \ni \tau \mapsto \rightarrow p\tau (\cdot ) are con-
tinuous at \tau 0 in C0 topology, and B+

\varepsilon 0(\tau 0) \ni \tau \mapsto \rightarrow t\tau f is continuous at \tau 0.

3. In addition, the mapping B+
\varepsilon 0(\tau 0) \ni \tau \mapsto \rightarrow \.x\tau (\cdot ) is continuous at \tau 0 for

the L\infty weak star topology.

\bullet Optimal control problems with state and control delays:
Denote B+

\varepsilon (\tau ) = B\varepsilon (\tau ) \cap \BbbR 3
+. Under assumptions (A) and (C) the following

hold:
1. There exists \varepsilon 0 > 0 such that, for every triple of delays \tau = (\tau 0, \tau 1, \tau 2)

satisfying \| \tau  - \tau 0\| < \varepsilon 0, each problem (OCP)\tau has at least one optimal
solution (x\tau (\cdot ), u\tau (\cdot )) in [ - \Delta , tf ], every extremal lift of which is normal.

2. The mappings B+
\varepsilon 0(\tau 0) \ni \tau \mapsto \rightarrow x\tau (\cdot ) and B+

\varepsilon 0(\tau 0) \ni \tau \mapsto \rightarrow p\tau (\cdot ) are contin-
uous at \tau 0 in C0 topology.

3. In addition, the mapping B+
\varepsilon 0(\tau 0) \ni \tau \mapsto \rightarrow (u\tau (\cdot ), u\tau (\cdot  - \tau 2)) is continuous

at \tau 0 for the L2 weak topology. Moreover, if u\tau 0(\cdot ) takes its values at
extremal points of U , then the mapping B+

\varepsilon 0(\tau 0) \ni \tau \mapsto \rightarrow (u\tau (\cdot ), u\tau (\cdot  - \tau 2))
is continuous at \tau 0 in L\infty topology.

4. When \tau 2 = 0, the previous conclusions remain valid for problems in free
final time, and then the mapping B+

\varepsilon 0(\tau 0) \ni \tau \mapsto \rightarrow t\tau f is continuous at \tau 0.

Several remarks are in order.
First, assumptions (A2) and (A3) on the uniqueness of the solution of (OCP)\tau 0

and on the uniqueness of its extremal lift are ``generic"": they are actually related to
the differentiability properties of the value function (see, e.g., [12, 5, 33]). They are
standard in optimization and are just made to keep a nice statement (see Theorem
2.1). These assumptions can be weakened as follows. If we replace (A2) and (A3)
with the assumption ``every extremal lift of every solution of (OCP)\tau 0 is normal,"" then
the conclusion provided in Theorem 2.1 below still holds, except that the continuity
properties must be written in terms of closure points (see section 3.3 and [22, Remark
1.11]). Finally, requiring that the unique extremal of (OCP)\tau 0 is, moreover, normal
is crucial to prove the continuity of the adjoint vectors w.r.t. delays.

1We notice that this correspondence is not necessarily uniquely defined. However, thanks to the
previous existence statement, at least one such correspondence exists in a neighborhood of \tau 0 and
the continuity properties hold for every such correspondence given in the following.
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Assumptions (B1) and (C3) play a complementary role in proving continuity for
the adjoint vectors (see section 3.3.4). They are related to the strict Legendre--Clebsch
condition and the uniqueness of solutions for (5), and, even if these assumptions seem
to be restrictive, many problems in applications satisfy them and examples can be
found in [18, 19, 34, 8, 37, 35, 20]. In particular, assumption (C3) is instrumentally
used also to derive strong continuity of controls from weak continuity when there
are delays on the control, because of the following general fact. Let X, Y be Banach
spaces and F : X \rightarrow Y be a continuous map. Suppose that (xk)k\in \BbbN \subseteq X is a sequence
such that xk \rightharpoonup x and F (xk) \rightharpoonup F (\=x) for some x, \=x \in X. Therefore, in general, we
cannot ensure that the two limits coincide, that is, x = \=x, except when F is linear and
injective. On the other hand, assumption (C2) becomes essential to ensure continuity
of Pontryagin cones when there are delays in the control variables (see section 3.3.4).

When the problem is control-affine, we assume in (one of the two possibilities
of) assumption (C3) that the optimal control u\tau 0(\cdot ) takes its values in the extremal
set of U . This is the case when the optimal control is bang-bang. As said above,
this property permits us to turn weak continuity into strong continuity. Such an
assumption is sharp: the counterexample of section 2.3 shows that, when the optimal
control of (OCP)\tau 0 does not take its values at extremal points of U , only a weak
continuity of optimal controls can be ensured in general.

Remark 2.2. The conclusions of Theorem 2.1 are valid for optimal control prob-
lems with control-affine dynamics and quadratic cost\int tf

0

\Bigl( 
K1\| x(t)\| 2 +K2\| x(t - \tau 1)\| 2 +K3\| u(t)\| 2 +K4\| u(t - \tau 2)\| 2

\Bigr) 
dt

(see section 3.3 and the proof in [8, Theorem 1]).

2.3. Weak continuity versus strong continuity of optimal controls. For
control-affine problems, Theorem 2.1 ensures weak continuity in L2 of optimal con-
trols. Moreover, when the optimal control u\tau 0(\cdot ) takes its values at extremal points
of U a.e., continuity is true in strong L\infty topology. In this section, we provide an
example where u\tau 0(\cdot ) does not take its values at extremal points of U , and continuity
fails in strong topology. This example shows that our assumptions are sharp.

Adapting arguments from [36], consider (OCP)\tau given by\left\{             
min

\int tf

0

1 dt, (u1(t))2 + (u2(t))2 \leqslant 1,

\.x1(t) = 1 - (x2(t))2 + \tau u2(t)g(x1(t)), x1(0) = 0 , x1(tf ) = 1,

\.x2(t) = u1(t) + \tau u2(t)h(x1(t)), x2(0) = 0 , x2(tf ) = 0,

(8)

where g and h are smooth functions, to be chosen. In this case

f(t, s, x1, x2, u1, u2) =

\biggl( 
1 - (x2)2 + (t - s)u2g(x1)

u1 + (t - s)u2h(x1)

\biggr) 
.

Taking \tau 0 = 0, under appropriate assumptions on g and h, Theorem 2.1 applies with
weak convergence in L2 of controls, but no strong convergence of controls arises. The
proof follows closely the arguments of [36]; therefore, we just recall the main steps.

First, when \tau = 0, problem (8) has the unique solution (u1, u2)(t) = 0 with unique
extremal (x1, x2, p1, p2, p0, u1, u2)(t) = (t, 0, 1, 0, - 1, 0, 0), where tf = 1.
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Remark that, in the case in which Theorem 2.1 applies, only the weak conver-
gence in L2 of optimal controls is ensured. The assumptions of Theorem 2.1 hold; in
particular, every optimal control of (OCP)\tau is continuous. Indeed, in [36] it is shown
that, in the case \tau \not = 0, under the assumption that function g may only vanish on a
subset of zero measure, the optimal controls related to problem (8) are

(9) u1\tau (t) =
p2\tau (t)\sqrt{} 
\phi (t)

, u2\tau (t) =
\tau 
\Bigl( 
p1\tau (t)g(x

1
\tau (t)) + p2\tau (t)h(x

1
\tau (t))

\Bigr) 
\sqrt{} 
\phi (t)

,

where \phi (t) = (p2\tau (t))
2+\tau 2

\bigl( 
p1\tau (t)g(x

1
\tau (t))+p

2
\tau (t)h(x

1
\tau (t))

\bigr) 2
, and the adjoint coordinate

p2\tau may only vanish on subsets of zero measure. It follows that optimal controls (9)
are continuous, and therefore, Theorem 2.1 applies.

Both u1\tau and u2\tau converge weakly to 0 as soon as \tau tends to 0. However, in [36] it
is also proved that specific choices of highly oscillating functions g and h show that
u1\tau and u2\tau cannot converge almost everywhere to 0 when \tau tends to 0.

2.4. Application to shooting methods. In this section, we briefly discuss how
the continuity properties of Pontryagin extremals in Theorem 2.1 may be exploited to
solve optimal control problems with delays via shooting methods. Analyzing in detail
conditions ensuring convergence is beyond the scope of the present paper and will be
done elsewhere. Let us, however, describe the idea in a quite informal way.

It is known that solving generic (OCP)\tau via shooting methods may be difficult.
A first issue is to ensure that the shooting function is piecewise C1. This is the case,
under general assumptions, in at least two situations. The first is when the extremal
control can be expressed as a C1 function of (x\tau (\cdot ), p\tau (\cdot )) (``smooth optimal control"";
see [9]), which is satisfied, at least locally, under the absence of control delays and some
Legendre--Clebsch condition. The second is when the extremal control is bang-bang,
with a finite number of switchings, under generic assumptions (among which is the
absence of control delays) ensuring that the shooting function is a finite composition
of C1 mappings (see, e.g., [36]). Examples for which these hold have been cited in
section 2.2. Under such assumptions, each iteration of a shooting method consists
of solving the coupled dynamics (4), where a value of p\tau (0) is provided. This means
that one has to solve a differential-difference boundary value problem where both
forward and backward terms of time appear within mixed type differential equations.
It follows that, in order to initialize successfully a shooting method for (4), a guess
of the initial value of the adjoint vector p\tau (0) is not sufficient, but rather, a good
numerical guess of the whole function p\tau (\cdot ) must be provided to make the procedure
converge. This represents an additional difficulty w.r.t. the usual shooting method and
a global discretization of the system of differential equations (4) must be performed.
The result stated in Theorem 2.1 suggests that one may solve (OCP)\tau numerically
via shooting methods iteratively, starting from the solution of its nondelayed version
(OCP) = (OCP)\tau =0, and this by means of homotopy procedures.

The basic idea of homotopy methods is to solve a difficult problem step by step,
starting from a simpler problem, by parameter deformation. The theory and practice
of homotopy methods are well known (see, e.g., [2]). Combined with the shooting
problem derived from the maximum principle, a homotopy method consists in de-
forming the problem into a simpler one (that can be easily solved) and then in solving
a series of shooting problems step by step to come back to the original problem. In
many situations, exploiting the nondelayed version of the maximum principle mixed
with other techniques (such as geometric control, dynamical system theory applied to
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mission design, etc.; we refer the reader to [40] for a survey), one is able to initialize
efficiently a shooting method on the optimal control problem without delays (OCP).
Thus, it is legitimate to wonder if one may solve (OCP)\tau by shooting methods start-
ing a homotopy procedure where delays \tau represent the deformation parameter and
(OCP) is taken as the starting problem. This approach is a way to address the flaw
of shooting methods applied to (OCP)\tau : on one hand, the global adjoint vector for
(OCP) could be used to initialize efficiently a shooting method on (4) and, on the other
hand, we could solve (4) via usual iterative methods for ODEs (for example, by using
the global state solution at the previous iteration). In the context of Theorem 2.1,
the previous homotopy procedure is well-posed. Indeed, assuming that the delay \tau is
small enough and the shooting function is piecewise C1 (see our comments above), the
continuity properties stated by Theorem 2.1 applied at \tau = 0 allow straightforwardly
the homotopic path to converge toward extremals related to the problem with delays
(OCP)\tau when starting from the extremal of the problem without delays (OCP).

Implementing homotopy methods combined with the maximum principle with de-
lays, as briefly described above, however, requires a number of considerations which
go beyond the scope of the present paper. In a forthcoming work, we will show that
this approach indeed happens to be competitive w.r.t. other approaches (in particular,
direct methods that have been classically applied in this context; see, e.g., [18, 19])
and we will illustrate it on a nontrivial and nonacademic optimal control problem
with launch vehicles, a case of application where delays are the main obstacle to effi-
ciently embark on numerical approaches. (The authors already showed the numerical
efficiency of this approach on a simpler problem; see [8].)

3. Proof of the main result. Without loss of generality, we assume that \tau 0 = 0,
denoting by (OCP)=(OCP)\tau 0 the problem without delays. Furthermore, we denote
tf = t\tau 0f , x(\cdot ) = x\tau 0(\cdot ), p(\cdot ) = p\tau 0(\cdot ) and u(\cdot ) = u\tau 0(\cdot ).

The proof of the convergence of extremals for (OCP)\tau to the extremal of (OCP), as
\tau tends to 0, is organized in three steps. First, by using assumptions on the nondelayed
version of the problem only, we infer the controllability of problems (OCP)\tau for every
\tau small enough. The previous step requires some implicit function theorem involving
parameters. This allows us to proceed to the second part, which consists in showing
the existence of solutions for (OCP)\tau for \tau sufficiently small, and their convergences,
as \tau tends to 0, to solutions of (OCP). In the case of control and state delays, we will
see the importance of considering control-affine systems throughout this step. Finally,
we address the more difficult issue of establishing the convergence, as \tau tends to 0,
of the adjoint vectors related to (OCP)\tau to the adjoint vector of (OCP): a refined
analysis on the convergence of Pontryagin cones is needed.

We recall in section 3.1 the main steps of the proof related to the maximum
principle for problems (OCP)\tau with delays. To our knowledge, the proof of this result
via needle-like variations does not appear explicitly in the literature, and for the
comprehension of the whole proof, we report it. Section 3.2 provides a useful conic
version of the implicit function theorem, depending on parameters, which is a key
element for the entire reasoning. Finally, in section 3.3, we report the whole proof of
the desired result, as detailed above.

3.1. Proof of the Pontryagin maximum principle using needle-like vari-
ations. In this section we sketch the proof of the maximum principle for (OCP)\tau using
needle-like variations. For this, we do not use the assumptions of Theorem 2.1, giving
the result for a larger class of control systems with constant delays. Our reasoning is
valid as well for problems with free final time, since we do not employ the well known
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reduction to a fixed final time problem, but rather, we modify the Pontryagin cone to
keep track of the free variable t\tau f , by making L1-variations on t\tau f (as in [25], for pure
state delays).

3.1.1. Preliminary notation. Fix a constant delay \tau = (\tau 0, \tau 1, \tau 2) \in [0,\Delta ]3.
Consider (OCP)\tau as given by formulation (1)--(2) and let (x\tau (\cdot ), u\tau (\cdot )) be an optimal
solution defined in [ - \Delta , t\tau f ]. For every positive final time \=tf , introduce the instanta-

neous cost function x0\tau (\cdot ) defined in [ - \Delta , \=tf ] and a solution of\left\{   \.x0(t) = f0(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u\tau (t), u\tau (t - \tau 2)), t \in [0, \=tf ],

x0(t) = 0 , t \in [ - \Delta , 0],

such that (2) provides C\tau (\=tf , u\tau ) = x0\tau (\=tf ). We define the extended state \~x = (x, x0)

and the extended dynamics \~f(t, s, \~x, \~y, u, v) = (f(t, s, x, y, u, v), f0(t, s, x, y, u, v)) for
which we will often denote \~f(t, s, x, y, u, v) = \~f(t, s, \~x, \~y, u, v). Consider the extended
dynamical problem in \BbbR n+1

(10)

\left\{         
\.\~x(t) = \~f(t, t - \tau 0, \~x(t), \~x(t - \tau 1), u(t), u(t - \tau 2)), t \in [0, \=tf ],

\~x| [ - \Delta ,0](t) = (\phi 1(t), 0), \~x(\=tf ) \in Mf \times \BbbR ,

u(\cdot ) \in L\infty ([ - \Delta , \=tf ], U), u| [ - \Delta ,0](t) = \phi 2(t).

As provided in section 2.1, the set of all admissible controls of (10) in [ - \Delta , \=tf ]

taking their values in \BbbR m is denoted by \~\scrU \tau 
\=tf ,\BbbR m , while \~\scrU \tau 

\=tf ,U
denotes the set of all

admissible controls of (10) in [ - \Delta , \=tf ] taking their values in U . From this

\~\scrU \tau 
\BbbR m =

\bigcup 
\=tf>0

\~\scrU \tau 
\=tf ,\BbbR m , \~\scrU \tau 

U =
\bigcup 
\=tf>0

\~\scrU \tau 
\=tf ,U

.

The extended end-point mapping is defined as

\~E\tau ,\=tf : \~\scrU \tau 
\=tf ,\BbbR m \rightarrow \BbbR n+1 : u \mapsto \rightarrow \~x(\=tf ),

where \~x(\cdot ) is the unique solution of problem (10), related to control u(\cdot ) \in \~\scrU \tau 
\=tf ,\BbbR m . As

standard facts (see, e.g., [10]), the set \~\scrU \tau 
\=tf ,\BbbR m , endowed with the standard topology of

L\infty ([ - \Delta , \=tf ],\BbbR m), is open and the end-point mapping is smooth on \~\scrU \tau 
\=tf ,\BbbR m .

For every t \geqslant 0, define the extended accessible set \~\scrA \tau ,U (t) as the image of the

extended end-point mapping \~E\tau ,t restricted to \~\scrU \tau 
t,U , where

\~\scrA \tau ,U (0) = \{ (\phi 1(0), 0)\} .
The next fact is at the basis of the proof of the maximum principle (see, e.g., [1]).

Lemma 3.1. For every optimal solution (x\tau (\cdot ), u\tau (\cdot )) of (OCP)\tau defined in the
interval [ - \Delta , t\tau f ], the point \~x\tau (t

\tau 
f ) belongs to the boundary of the set \~\scrA \tau ,U (t

\tau 
f ).

3.1.2. Needle-like variations and Pontryagin cones. In what follows we
consider (OCP)\tau with free final time, remarking that all results can be adapted for
problems with fixed final time (see, e.g., [1]). Moreover, we suppose that the optimal
final time t\tau f is a Lebesgue point for the optimal control u\tau (\cdot ) of (OCP)\tau and of
u\tau (\cdot  - \tau 2). Otherwise, we can extend all the conclusions that follow by using closure
points near t\tau f (as in [27, pp. 310--314] or [17, pp. 133--134]).
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For delays \tau = (\tau 0, \tau 1, \tau 2) \in [0,\Delta ]3, let (x\tau (\cdot ), u\tau (\cdot )) be a solution of (OCP)\tau and,
without loss of generality, extend u\tau (\cdot ) by some constant vector of U in [t\tau f , t

\tau 
f + \tau 2].

Let j \geqslant 1 be an integer and consider 0 < t1 < \cdot \cdot \cdot < tj < t\tau f Lebesgue points,

respectively, of u\tau (\cdot ), u\tau (\cdot  - \tau 2) and of u\tau (\cdot + \tau 2). Choosing j arbitrary values
ui \in U , for every \eta i > 0 such that  - \Delta \leqslant ti  - \eta i, the needle-like variation \pi =
\{ t1, . . . , tj , \eta 1, . . . , \eta j , u1, . . . , uj\} of control u\tau (\cdot ) is defined by the modified control

u\pi \tau (t) =

\Biggl\{ 
ui , t \in (ti  - \eta i, ti] ,

u\tau (t) otherwise .

Control u\pi \tau (\cdot ) takes its values in U and, by continuity w.r.t. initial data, whenever
\| (\eta 1, . . . , \eta j)\| \rightarrow 0, the trajectory \~x\pi \tau (\cdot ), solution of the dynamics of (10) related to
control u\pi \tau (\cdot ), converges uniformly to \~x\tau (\cdot ) = (x0\tau (\cdot ), x\tau (\cdot )). For every value z \in U
and appropriate Lebesgue point s \in (0, t\tau f ), we define the vectors

\omega  - 
z (s) =

\~f(s, s - \tau 0, x\tau (s), x\tau (s - \tau 1), z, u\tau (s - \tau 2)) ,(11)

 - \~f(s, s - \tau 0, x\tau (s), x\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2)) ,

\omega +
z (s) =

\~f(s+ \tau 2, s+ \tau 2  - \tau 0, x\tau (s+ \tau 2), x\tau (s+ \tau 2  - \tau 1), u\tau (s+ \tau 2), z)(12)

 - \~f(s+ \tau 2, s+ \tau 2  - \tau 0, x\tau (s+ \tau 2), x\tau (s+ \tau 2  - \tau 1), u\tau (s+ \tau 2), u\tau (s))

and, given \xi \in \BbbR n+1, we denote by \~v\tau s,\xi (\cdot ) the solution of the following linear system:\left\{               

\.\psi (t) =
\partial \~f

\partial x
(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u\tau (t), u\tau (t - \tau 2))\psi (t)

+
\partial \~f

\partial y
(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u\tau (t), u\tau (t - \tau 2))\psi (t - \tau 1) ,

\psi (s) = \xi , \psi (t) = 0 , t \in (s - \tau 1, s) .

(13)

Functions \~v\tau s,\xi : \BbbR \rightarrow \BbbR n+1 are usually called variations vectors. In what follows, we
denote \~w\tau 

s,z(t) = \~v\tau 
s,\omega  - 

z (s)
(t) + \~v\tau 

s+\tau 2,\omega +
z (s)

(t).

Definition 3.2. For every t \in (0, t\tau f ], the Pontryagin cone \~K\tau (t) \subseteq \BbbR n+1 at
\~x\tau (t) for the extended system is defined as the smallest closed convex cone containing
vectors \~w\tau 

s,z(t), where z \in U and 0 < s < t is a Lebesgue point of u\tau (\cdot ), u\tau (\cdot  - \tau 2) and
of u\tau (\cdot +\tau 2). The augmented Pontryagin cone \~K\tau 

1 (t) \subseteq \BbbR n+1 at \~x\tau (t) for the extended
system is defined as the smallest closed convex cone containing \~f(t, t - \tau 0, x\tau (t), x\tau (t - 
\tau 1), u\tau (t), u\tau (t  - \tau 2)),  - \~f(t, t  - \tau 0, x\tau (t), x\tau (t  - \tau 1), u\tau (t), u\tau (t  - \tau 2)) and vectors
\~w\tau 
s,z(t), where z \in U and 0 < s < t is a Lebesgue point of u\tau (\cdot ), u\tau (\cdot  - \tau 2) and of

u\tau (\cdot + \tau 2). The Pontryagin cone K\tau (t) \subseteq \BbbR n and the augmented Pontryagin cone
K\tau 

1 (t) \subseteq \BbbR n at x\tau (t) for the nonextended system are defined similarly, considering
dynamics f instead of the extended dynamics \~f . Obviously, the cones K\tau (t), K\tau 

1 (t)
are the projections onto \BbbR n of \~K\tau (t), \~K\tau 

1 (t), respectively.

Remark 3.3. In the case of optimal control problems without delays, that is,
(OCP)\tau =0, the definition of Pontryagin cones is slightly different from the one obtained
from Definition 3.2 with the substitution \tau = 0. Indeed, considering \~K0(t), vectors
\~w\tau 
s,z(t) are rather replaced by single variations \~v0s,\omega z(s)

(t) for which

\omega z(s) = \~f(s, s, x0(s), x0(s), z, z) - \~f(s, s, x0(s), x0(s), u0(s), u0(s)) ,

where (x0(\cdot ), u0(\cdot )) is an optimal solution for (OCP)\tau =0 (see, e.g., [32]).
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Lemma 3.4 (needle-like variation formula with delays). Let (\delta , \eta 1, . . . , \eta j) \in \BbbR \times 
\BbbR j

+ small enough. For tj < t \leqslant t\tau f Lebesgue point of u\tau (\cdot ), u\tau (\cdot  - \tau 2), we have

\~x\pi \tau (t+ \delta ) = \~x\tau (t) + \delta \~f(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u\tau (t), u\tau (t - \tau 2))

+

j\sum 
i=1

\eta i

\Bigl( 
\~v\tau 
ti,\omega 

 - 
ui

(ti)
(t) + \~v\tau 

ti+\tau 2,\omega +
ui

(ti)
(t)
\Bigr) 
+ o
\Bigl( 
\delta +

j\sum 
i=1

\eta i

\Bigr) 
.

The proof of this lemma is technical (but not difficult). It is done in Appendix A.

3.1.3. Proof of the maximum principle. One way to prove the maximum
principle is by contradiction via the following classical result (see, e.g., [1, 14, 11]).

Lemma 3.5 (conic implicit function theorem). Let C \subseteq \BbbR m be convex with
nonempty interior, of vertex 0, and F : C \rightarrow \BbbR n be Lipschitz such that F (0) = 0
and is G\^ateaux differentiable at 0 along admissible directions of C, i.e., there exists a
linear mapping dF (0) : \BbbR m \rightarrow \BbbR n such that, for every x \in C,

(14)
F (\alpha x)

\alpha 
 -  -  - \rightarrow 
\alpha \rightarrow 0+

dF (0)x .

If dF (0) \cdot Cone(C) = \BbbR n, where Cone(C) stands for the (convex) cone generated by
elements of C, then 0 \in Int F (\scrV \cap C) for every neighborhood \scrV of 0 in \BbbR m.

Consider any integer j \geqslant 1 and a positive real number \varepsilon j > 0. Define

G\tau 
j : B\varepsilon j (0) \cap \BbbR \times \BbbR j

+ \rightarrow \BbbR n+1 : (\delta , \eta 1, . . . , \eta j) \mapsto \rightarrow \~x\pi \tau (t
\tau 
f + \delta ) - \~x\tau (t

\tau 
f ) ,

where \pi is any variation of control u\tau (\cdot ) and \varepsilon j is small enough such that G\tau 
j is

well-defined (see section 3.1.2). The following statements hold:
\bullet G\tau 

j (0) = 0 and G\tau 
j is Lipschitz continuous.

\bullet G\tau 
j is G\^ateaux differentiable at 0 along admissible directions of the convex

set B\varepsilon j (0) \cap \BbbR \times \BbbR j
+ (in the sense of (14)) thanks to Lemma 3.4.

The Lipschitz behavior of G\tau 
j is proved by a recursive use of needle-like variations at

ti - \eta i, 1 \leqslant i \leqslant j (for \eta i small enough), Lebesgue points of u\tau (\cdot ), by making a recursive
use of Lemma 3.4. Remark that, since ti  - \eta i are Lebesgue points of u\tau (\cdot ) only for
almost every \eta i, the recursive use of Lemma 3.4 can be done only almost everywhere.
The conclusion follows from the continuity of G\tau 

j and density arguments.
The maximum principle is established as follows. Suppose, by contradiction, that

the cone \~K\tau 
1 (t

\tau 
f ) coincides with \BbbR n+1. Then, by definition, there would exist an integer

j \geqslant 1, a variation \pi of u\tau (\cdot ), and a positive real number \varepsilon j > 0 such that

dG\tau 
j (0) \cdot (\BbbR \times \BbbR j

+) =
\~K\tau 
1 (t

\tau 
f ) = \BbbR n+1.

In this case, Lemma 3.5 would imply that the point \~x\tau (t
\tau 
f ) belongs to the interior

of the accessible set \~\scrA \tau ,U (t
\tau 
f ), which contradicts Lemma 3.1. Therefore the following

holds.

Lemma 3.6. There exists \~\psi \tau \in \BbbR n+1 \setminus \{ 0\} (Lagrange multiplier) such that

\langle \~\psi \tau , \~f(t
\tau 
f , t

\tau 
f  - \tau 0, x\tau (t

\tau 
f ), x\tau (t

\tau 
f  - \tau 1), u\tau (t

\tau 
f ), u\tau (t

\tau 
f  - \tau 2))\rangle = 0,

\langle \~\psi \tau , \~v\tau \rangle \leqslant 0 \forall \~v\tau \in \~K\tau (t\tau f ).
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The relations provided by Lemma 3.6 allow us to derive the necessary conditions
(4)--(7) given in section 2.1. (We skip these computations, referring to [1, 11, 23]
for details.) The relation between the adjoint vector satisfying (4) and the above
Lagrange multiplier \~\psi \tau = (\psi \tau , \psi 

0
\tau ) is that (p\tau (\cdot ), p0\tau ) is built so that p\tau (t

\tau 
f ) = \psi \tau ,

p0\tau = \psi 0
\tau . We will make use of the result below, which follows from the previous

considerations.

Lemma 3.7. Consider the free final time problem (OCP)=(OCP)\tau =0. For any
optimal trajectory x(\cdot ) of (OCP), the following statements are equivalent:

\bullet The trajectory x(\cdot ) has an unique extremal lift (x(\cdot ), p(\cdot ), p0, u(\cdot )) whose ad-
joint (p(\cdot ), p0) is unique up to a multiplicative scalar, which is normal.

\bullet The cone \~K\tau =0
1 (tf ) is a half-space of \BbbR n+1 and K\tau =0

1 (tf ) = \BbbR n.

In particular, Lemma 3.7 requires the uniqueness of merely signed multipliers for
(OCP)\tau =0, i.e., p

0 \leq 0. To prove Lemma 3.7 under this assumption, the argument
above just needs slight changes, which consist of defining the function G\tau 

j by adding a
slack positive control variable to the last component of dynamics (10) (see, e.g., [1]).

3.2. Conic implicit function theorem with parameters. The first step of
the proof of Theorem 2.1 makes use of the procedure detailed in section 3.1. More
specifically, we need the needle-like variation formula and the conic implicit function
theorem. However, Lemma 3.5 is not suited to this situation because we have to take
into account the dependence w.r.t. delays \tau . Indeed, the proof of Lemma 3.5 is based
on a Brouwer fixed point theorem (see, e.g., [1]) which does not consider continuous
dependence w.r.t. parameters (which, in our case, is represented by \tau ). Therefore,
in this section, we introduce a more general version of the conic implicit function
theorem depending on parameters.

When considering delays \tau as a varying parameter, the variation formula provided
by Lemma 3.4 holds only for almost every \tau , and this, because we need that each ti
be a Lebesgue point of u\tau (\cdot ), u\tau (\cdot  - \tau ) and of u\tau (\cdot + \tau ). This leads us to introduce
a notion of conic implicit function theorem which, on one hand, ensures a continuous
dependence w.r.t. parameters and, on the other hand, deals with quantities defined
uniquely on dense subsets. The notion of differentiability that we need is the following.
A function f : C \subseteq \BbbR j \rightarrow \BbbR n is said almost everywhere strictly differentiable at some
point x0 \in C whenever there exists a linear continuous mapping df(x0) : \BbbR j \rightarrow \BbbR n

such that

f(y) - f(x) = df(x0) \cdot (y  - x) + \| y  - x\| g(x, y)

for almost every x, y \in C, where g(x, y) tends to 0 as soon as \| x - x0\| +\| y - x0\| 
a.e. -  - \rightarrow 0.

One may remark that the notion of strict differentiability and of conic implicit
function theorem depending on parameters has already been introduced by [3]. In
our framework, we adapt these results to dense subsets.

Lemma 3.8 (conic implicit function theorem with parameters). Let C \subseteq \BbbR j be
open and convex with a nonempty interior, of vertex 0, and F : \BbbR k

+ \times C \rightarrow \BbbR n :
(\varepsilon , x) \mapsto \rightarrow F (\varepsilon , x) be a continuous mapping, for which F (0, 0) = 0, satisfying the fol-
lowing:

\bullet For almost every \varepsilon \in \BbbR k
+, F is almost everywhere strictly differentiable w.r.t.

x at 0, and \partial F
\partial x (\varepsilon , 0) is continuous in \varepsilon on a dense subset.

\bullet For almost every \varepsilon \in \BbbR k
+, the remainder satisfies g\varepsilon (x, y) \rightarrow 0 as (x, y)

a.e. -  - \rightarrow 0,
uniformly w.r.t. \varepsilon on a dense subset.

\bullet There holds \partial F
\partial x (0, 0) \cdot Cone(C) = \BbbR n.
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Therefore, there exist \varepsilon 0 > 0, a neighborhood \scrV of 0 in \BbbR n, and a continuous function
h : [0, \varepsilon 0)

k\times \scrV \rightarrow C, such that F (\varepsilon , h(\varepsilon , y)) = y for every \varepsilon \in [0, \varepsilon 0)
k and every y \in \scrV .

The proof of Lemma 3.8 is done in Appendix B.

3.3. Proof of Theorem 2.1. From now on, assume that assumptions (A) hold.
Moreover, (x(\cdot ), u(\cdot )) will denote the (unique) solution of (OCP) and we assume that
its related final time tf is a Lebesgue point of u(\cdot ) (if not, as pointed out in section
3.1.2, we refer to the approach proposed by [27, 17]). Finally, without loss of generality,
we consider free final time problems (otherwise, the proof is similar, but simpler),
introducing further assumption (C2) for (OCP)\tau with control delays.

3.3.1. Controllability for (OCP)\tau . For any integer j \geqslant 1, fix 0 < t1 < \cdot \cdot \cdot <
tj < tf Lebesgue points of control u(\cdot ) and j arbitrary values ui \in U . We denote v| n
the first n coordinates of a vector v \in \BbbR n+1. For an appropriate small positive real
number \varepsilon j > 0, denoting by \~x(\varepsilon 0,\varepsilon 1,\varepsilon 2)(\cdot ) the trajectory solution of (10) with delay
\tau = (\varepsilon 0, \varepsilon 1, \varepsilon 2) and control u(\varepsilon 0,\varepsilon 1,\varepsilon 2)(\cdot ), we define the mapping

\Gamma :B\varepsilon j (0)\cap (\BbbR 3
+\times \BbbR \times \BbbR j

+) \rightarrow \BbbR n : (\varepsilon 0, \varepsilon 1, \varepsilon 2, \delta , \eta 1, . . . , \eta j) \mapsto \rightarrow (\~x\pi (\varepsilon 0,\varepsilon 1,\varepsilon 2)(tf+\delta ) - \~x(tf ))
\bigm| \bigm| 
n
,

which, thanks to assumption (A2) and by continuity w.r.t. initial data, is well-defined
and continuous. Moreover, \Gamma (0, . . . , 0) = 0 and

\Gamma (\varepsilon 0, . . . , \eta j) = (\~x\pi (\varepsilon 0,\varepsilon 1,\varepsilon 2)(tf + \delta ) - \~x(\varepsilon 0,\varepsilon 1,\varepsilon 2)(tf ))
\bigm| \bigm| 
n
+ (\~x(\varepsilon 0,\varepsilon 1,\varepsilon 2)(tf ) - \~x(tf ))

\bigm| \bigm| 
n
.

From Lemma 3.4 and a recursive use of the needle-like variation formula (see sec-
tion 3.1.3), for almost every (\varepsilon 0, \varepsilon 1, \varepsilon 2) small enough, \Gamma is almost everywhere strictly
differentiable w.r.t. (\delta , \eta 1, . . . , \eta j) at 0, \partial \Gamma 

\partial (\delta ,\eta 1,...,\eta j)
(\varepsilon 0, \varepsilon 1, \varepsilon 2, 0) is continuous w.r.t.

(\varepsilon 0, \varepsilon 1, \varepsilon 2) on a dense subset, and, moreover, the remainder of the related Taylor
expansion converges to zero uniformly w.r.t. (\varepsilon 0, \varepsilon 1, \varepsilon 2) on a dense subset.

From assumption (A3), the unique extremal lift of x(\cdot ) is normal, and hence, it
follows from Lemma 3.7 that Int K\tau =0

1 (tf ) = \BbbR n. We recall that we consider only
either optimal control problems with pure state delays or control-affine optimal control
problems. Therefore, thanks to Remark 3.3, there exist a real number \delta , an integer
j \geqslant 1, and a variation \pi = \{ t1, . . . , tj , \eta 1, . . . , \eta j , u1, . . . , uj\} such that

\partial \Gamma 

\partial (\delta , \eta 1, . . . , \eta j)
(0) \cdot (\BbbR \times \BbbR j

+) = Int K\tau =0
1 (tf ) = \BbbR n.

At this step, Lemma 3.8 implies the existence of \varepsilon 0 > 0 such that, for every \tau =
(\tau 0, \tau 1, \tau 2) \in [0, \varepsilon 0)

3, there exist a real \delta (\tau ) and positive reals \eta 1(\tau ), . . . , \eta j(\tau ) such
that \Gamma (\tau 0, \tau 1, \tau 2, \delta (\tau ), \eta 1(\tau ), . . . , \eta j(\tau )) = 0. Moreover, \delta (\tau ), \eta 1(\tau ), . . . , \eta j(\tau ) are con-
tinuous w.r.t. \tau . From assumption (A4), it follows that, for every \tau = (\tau 0, \tau 1, \tau 2) \in 
[0, \varepsilon 0)

3, the subset Mf is reachable for the dynamics of (OCP)\tau , in a final time
t\tau f \in [0, b], by using control u\pi (\tau 1,\tau 2)(\cdot ) \in L\infty ([0, t\tau f ], U).

We have proved that, for every \tau = (\tau 0, \tau 1, \tau 2) \in (0, \varepsilon 0)
3, (OCP)\tau is controllable.

Remark that this argument still holds for (OCP)\tau with pure state delays.

3.3.2. Existence of optimal controls for (OCP)\tau . We focus first on the ex-
istence of an optimal control for (OCP)\tau for every \tau \in (0, \varepsilon 0)

3. No other assumptions
but (A) and (C1) are considered. In particular, mappings f and f0 are affine in the
two control variables. Thanks to this property, existence can be established by using
the arguments in [8, Theorem 2]. However, we prefer to develop the usual Filippov's
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scheme [16] (following [27, 39]) to highlight the difficulty in applying this procedure
to more general systems (in particular, see Remark 3.9). Even if problems (OCP)\tau 
with control and state delays are considered, we assume to have free final time just
to use the same approach for a problem with pure state delays.

Fix \tau = (\tau 0, \tau 1, \tau 2) \in (0, \varepsilon 0)
3 and let

\alpha = inf
u\in \scrU \tau 

U

C\tau (tf (u), u) =

\int tf (u)

0

f0(t, t - \tau 0, x(t), x(t - \tau 1), u(t), u(t - \tau 2)) dt.

Consider now a minimizing sequence of trajectories xk(\cdot ) associated to uk(\cdot ), that is,
C\tau (tf (uk), uk) \rightarrow \alpha when k \rightarrow \infty and define

\~Fk(t) = \~f(t, t - \tau 0, xk(t), xk(t - \tau 1), uk(t), uk(t - \tau 2))

for almost every t \in [0, tf (uk)]. By assumption (A4), we can extend \~Fk(\cdot ) by zero on

(tf (uk), b] so that ( \~Fk(\cdot ))k\in \BbbN is bounded in L\infty ([0, b],\BbbR n+1). Therefore, up to some

subsequence, ( \~Fk(\cdot ))k\in \BbbN converges to some \~F (\cdot ) = (F (\cdot ), F 0(\cdot )) \in L\infty ([0, b],\BbbR n+1)
for the weak star topology of L\infty . On the other hand, up to some subsequence, the
sequence (tf (uk))k\in \BbbN converges to some t\tau f \geqslant 0. Then, for every t \in [ - \Delta , t\tau f ], define

(15) x\tau (t) = \phi 1(t)1[ - \Delta ,0)(t) + 1[0,t\tau f ]
(t)

\biggl( 
\phi 1(0) +

\int t

0

F (s) ds

\biggr) 
.

Now, x\tau (\cdot ) is absolutely continuous and, considering continuous extensions, (xk(\cdot ))k\in \BbbN 
converges pointwise to x\tau (\cdot ) within [ - \Delta , t\tau f ]. Moreover, by assumptions (A1), (A4)
and the Arzel\`a--Ascoli theorem, up to some subsequence, (xk(\cdot ))k\in \BbbN converges to x\tau (\cdot ),
uniformly in [ - \Delta , t\tau f ]. From the compactness of Mf , we have x\tau (t

\tau 
f ) \in Mf .

In the next paragraph, we show that x\tau (\cdot ) comes from a control in \scrU \tau 
t\tau f ,U

.

For almost every t \in [0, tf (uk)], set

\~Hk(t) = \~f(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), uk(t), uk(t - \tau 2))

and, if tf (uk)+\tau 
2 < t\tau f , extend it by 0 in (tf (uk), b]. At this step, we need to introduce

several structures to deal with the presence of the control delay \tau 2. First, let

\beta = max
\Bigl\{ 

| f0(t, s, x, y, u, v)| :  - \Delta \leqslant t, s \leqslant b , \| (x, y)\| \leqslant b , (u, v) \in U2
\Bigr\} 
> 0

and N \in \BbbN such that N\tau 2 \leqslant t\tau f < (N + 1)\tau 2. Considering continuous extensions, we

see that x\tau (\cdot ) is well-defined in [ - \Delta , (N + 1)\tau 2]. We define

\~G(t, u1, . . . , uN+1, \gamma 1, . . . , \gamma N+1)

=

\left(          

f(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u1, \phi 2(t - \tau 2))

f0(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u1, \phi 2(t - \tau 2)) + \gamma 1

f(t+ \tau 2, t+ \tau 2  - \tau 0, x\tau (t+ \tau 2), x\tau (t+ \tau 2  - \tau 1), u2, u1)

f0(t+ \tau 2, t+ \tau 2  - \tau 0, x\tau (t+ \tau 2), x\tau (t+ \tau 2  - \tau 1), u2, u1) + \gamma 2
. . .

f(t+N\tau 2, t+N\tau 2  - \tau 0, x\tau (t+N\tau 2), x\tau (t+N\tau 2  - \tau 1), uN+1, uN )

f0(t+N\tau 2, t+N\tau 2  - \tau 0, x\tau (t+N\tau 2), x\tau (t+N\tau 2  - \tau 1), uN+1, uN ) + \gamma N+1

\right)          

(16)
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almost everywhere in [0, \tau 2], and

\~V\beta (t)

=

\biggl\{ 
\~G(t, u1, . . . , uN+1, \gamma 1, . . . , \gamma N+1) : (u1, . . . , uN+1) \in UN+1 ,\forall i = 1, . . . , N + 1 : \gamma i \geqslant 0 ,

| f0(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u1, \phi 2(t - \tau 2)) + \gamma 1| \leqslant \beta 

\forall i = 1, . . . , N : | f0(t+ i\tau 2, t+ i\tau 2  - \tau 0, x\tau (t+ i\tau 2), x\tau (t+ i\tau 2  - \tau 1), ui+1, ui) + \gamma i+1| \leqslant \beta 

\biggr\} 
.

Thanks to assumption (A1), \~V\beta (t) is compact for the standard topology of \BbbR (n+1)(N+1).

Moreover, assumptions (A1) and (C1) ensure that \~V\beta (t) is convex. We have that

\~\scrV =
\Bigl\{ 

\~G(\cdot ) \in L2([0, \tau 2],\BbbR (n+1)(N+1)) : \~G(t) \in \~V\beta (t) , a.e. [0, \tau 2]
\Bigr\} 

is convex and closed in L2([0, \tau 2],\BbbR (n+1)(N+1)) for the strong topology of L2, and
therefore, it is convex and closed in L2([0, \tau 2],\BbbR (n+1)(N+1)) for the weak topology of
L2. At this step, for every i = 0, . . . , N , denote

\~Gi+1
k (t) = \~f(t+i\tau 2, t+i\tau 2 - \tau 0, x\tau (t+i\tau 2), x\tau (t+i\tau 2 - \tau 1), uk(t+i\tau 2), uk(t+(i - 1)\tau 2))

and \~Gk(t) = ( \~G1
k(t), . . . ,

\~GN+1
k (t)). Therefore, \~Gk(\cdot ) \in \~\scrV for every k \in \BbbN . Moreover,

since ( \~Gk(\cdot ))k\in \BbbN is bounded in L2([0, \tau 2],\BbbR (n+1)(N+1)), up to some subsequence, it
converges for the weak topology of L2 to a function \~G(\cdot ) that necessarily belongs to
\~\scrV . Therefore, for almost every t \in [0, \tau 2] and i = 1, . . . , N + 1, there exist points
ui\tau (t) \in U and scalar \gamma i\tau (t) \geqslant 0 such that

\~G1(t) =

\Biggl( 
f(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u1\tau (t), \phi 

2(t - \tau 2))

f0(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u1\tau (t), \phi 
2(t - \tau 2)) + \gamma 1\tau (t)

\Biggr) 
and, for every i = 1, . . . , N ,

\~Gi+1(t)

=

\Biggl( 
f(t+ i\tau 2, t+ i\tau 2  - \tau 0, x\tau (t+ i\tau 2), x\tau (t+ i\tau 2  - \tau 1), ui+1

\tau (t), ui\tau (t))

f0(t+ i\tau 2, t+ i\tau 2  - \tau 0, x\tau (t+ i\tau 2), x\tau (t+ i\tau 2  - \tau 1), ui+1
\tau (t), ui\tau (t)) + \gamma i+1

\tau (t)

\Biggr) 
.

Moreover, since U is compact, functions ui\tau (\cdot ), \gamma i\tau (\cdot ) can be chosen to be measurable
on [0, \tau 2] using a measurable selection lemma (see, e.g., [27, Lemma 3A, p. 161]).

At this step, we come back to the whole interval [ - \tau 2, t\tau f ]. For this, set

u\tau (t) =

\biggl\{ 
\phi 2(t) t \in [ - \tau 2, 0] ,

ui+1
\tau (t - i\tau 2) t \in [i\tau 2, (i+ 1)\tau 2] , i = 0, . . . , N ,

\gamma \tau (t) = \gamma i+1
\tau (t - i\tau 2) t \in [i\tau 2, (i+ 1)\tau 2] , i = 0, . . . , N ,

which are measurable functions in [ - \tau 2, t\tau f ], and let

\~H(t) =

\biggl( 
f(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u\tau (t), u\tau (t - \tau 2))

f0(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u\tau (t), u\tau (t - \tau 2)) + \gamma \tau (t)

\biggr) 
.

From the weak star convergence in L\infty of ( \~Gk(\cdot ))k\in \BbbN toward \~G(\cdot ), it follows imme-
diately that ( \~Hk(\cdot ))k\in \BbbN converges to \~H(\cdot ) for the weak topology of L2. Furthermore,
from the differentiability of \~f w.r.t. (x, y), the compactness of U , and the dominated
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convergence theorem, one has

lim
k\rightarrow \infty 

\int t\tau f

0

\Bigl( 
\~Fk(t) - \~Hk(t)

\Bigr) 
\cdot \varphi (t) dt = 0

for every map \varphi (\cdot ) \in L2([0, t\tau f ],\BbbR n+1), from which \~H = \~F almost everywhere in [0, t\tau f ].

Combining (15) with all the previous results, we obtain

x\tau (t) = \phi 1(t)1[ - \Delta ,0)(t)+1[0,t\tau 
f
](t)

\biggl( 
\phi 1(0)+

\int t

0

f(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u\tau (t), u\tau (t - \tau 2)) ds

\biggr) 
,

which proves that the measurable function u\tau (\cdot ) is an admissible control for (OCP)\tau .
It remains to show that control u\tau (\cdot ) is optimal for (OCP)\tau . For this, from what

we showed above and by definition of weak star convergence, we have

C\tau (tf (uk), uk) \rightarrow 
\int t\tau f

0

\bigl( 
f0(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u\tau (t), u\tau (t - \tau 2)) + \gamma \tau (t)

\bigr) 
dt.

Since \gamma \tau (\cdot ) takes only nonnegative values, one finally has\int t\tau f

0

f0(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u\tau (t), u\tau (t - \tau 2)) dt \leqslant \alpha \leqslant C\tau (tf (v), v)

for every v(\cdot ) \in \scrU \tau 
U . Therefore, \gamma \tau (\cdot ) is necessarily zero and the conclusion follows.

Now, we consider problems (OCP)\tau with pure state delays. It is clear that, if
assumption (B2) holds, one can proceed with the same argument as above (which
is nothing else but the usual Filippov's scheme; see, e.g., [16]) for the existence of
optimal controls. In this case, Guinn's reduction (16) is not needed.

Remark 3.9. Guinn's reduction (16) converts the dynamics with control delays
into a new dynamics without control delays but with a larger number of variables.
It is clear from the context that the natural assumption to provide the existence of
optimal controls for generic nonlinear dynamics is the convexity of system (16) for
every N \in \BbbN (since we make delays vary), which is a very strong assumption. The
proof of [31, Lemma 2.1] does not work under the weaker assumption of convexity of
the epigraph of the extended dynamics.

3.3.3. Convergence of optimal controls and trajectories for (OCP)\tau .
We start by considering problems (OCP)\tau with pure state delays, by assuming that
assumption (B2) holds. In this case, the classical way to proceed consists in repro-
ducing and adapting the convexity Filippov's scheme used in the previous section for
the existence of optimal controls (see, e.g., [22]).

Let (\tau k)k\in \BbbN = ((\tau 0k , \tau 
1
k , 0))k\in \BbbN \subseteq (0, \varepsilon 0)

2\times \{ 0\} be an arbitrary sequence converging
to 0 as k tends to \infty and let (x\tau k(\cdot ), u\tau k(\cdot )) be an optimal solution for (OCP)\tau k with
final time t\tau kf (u\tau k). Since t\tau kf (u\tau k) \in [0, b], up to some subsequence, the sequence
(t\tau kf )k\in \BbbN = (t\tau kf (u\tau k))k\in \BbbN converges to some \=tf \in [0, b]. Since Mf is compact, up to
some subsequence, the sequence (x\tau k(t

\tau k
f ))k\in \BbbN \subseteq Mf converges to some point in Mf .

For every integer k and almost every t \in [0, t\tau kf ], set

\~Gk(t) =

\biggl( 
\~f(t, t - \tau 0k , x\tau k(t), x\tau k(t - \tau 1k ), u\tau k(t)),

\partial \~f

\partial x
(t, t - \tau 0k , x\tau k(t), x\tau k(t - \tau 1k ), u\tau k(t)),

\partial \~f

\partial y
(t, t - \tau 0k , x\tau k(t), x\tau k(t - \tau 1k ), u\tau k(t))

\biggr) 
.
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Thanks to assumption (A4), we extend \~Gk(\cdot ) by zero on (t\tau kf , b]. Assumptions (A1)

and (A4) imply that the sequence ( \~Gk(\cdot ))k\in \BbbN is bounded in L\infty , and then, up to some
subsequence, it converges to some \~G(\cdot ) = (G(\cdot ), G0(\cdot ), Gx(\cdot ), Gy(\cdot )) \in L\infty ([0, b],\BbbR n+1)
for the weak star topology of L\infty . Exploiting the weak star convergence of L\infty (and
using 1[\=tf ,b]

\~G as test function), we get that \~G(t) = 0 for almost every t \in [\=tf , b]. From
this, for every t \in [0, \=tf ], denote

(17) \=x(t) = \phi 1(t)1[ - \Delta ,0)(t) + 1[0,\=tf ](t)

\biggl( 
\phi 1(0) +

\int t

0

G(s) ds

\biggr) 
.

Clearly, \=x(\cdot ) is absolutely continuous and \=x(t) = limk\rightarrow \infty x\tau k(t) pointwise in [ - \Delta , \=tf ].
By assumptions (A1), (A4) and the Arzel\`a--Ascoli theorem, up to some subsequence,
(x\tau k(\cdot ))k\in \BbbN converges to \=x(\cdot ), uniformly in [ - \Delta , \=tf ], and we have \=x(\=tf ) \in Mf .

In the next paragraph, we prove that there exists a control \=u(\cdot ) \in L\infty ([0, \=tf ], U)
such that \=x(\cdot ) is an admissible trajectory for (OCP) associated with this control \=u(\cdot ).

Using the definition of \beta given in section 3.3.2, for t \in [0, \=tf ], consider the set

\~Z\beta (t)

=

\biggl\{ \biggl( 
f(t, t, \=x(t), \=x(t), u), f0(t, t, \=x(t), \=x(t), u) + \gamma ,

\partial \~f

\partial x
(t, t, \=x(t), \=x(t), u),

\partial \~f

\partial y
(t, t, \=x(t), \=x(t), u)

\biggr) 
:

u \in U , \gamma \geqslant 0 , | f0(t, t, \=x(t), \=x(t), u) + \gamma | \leqslant \beta 

\biggr\} 
.

Thanks to assumption (B2), the set \~Z\beta (t) is compact and convex in \BbbR n+1. We have
the following statements:

\bullet From the convexity and the compactness of \~Z\beta (t), for \delta > 0 and t \in [0, \=tf ],

\~Z\delta 
\beta (t) =

\biggl\{ 
x \in \BbbR n+1 : d(x, \~Z\beta (t)) \leqslant \delta 

\biggr\} 
, where d(x,A) = inf

y\in A
\| x - y\| 

is convex and compact for the standard topology of \BbbR n+1.
\bullet For every \delta > 0, the set

\~\scrZ \delta =

\biggl\{ 
\~F (\cdot ) \in L2([0, \=tf ],\BbbR n+1) : \~F (t) \in \~Z\delta 

\beta (t) for almost every t \in [0, \=tf ]

\biggr\} 
is convex and closed in L2([0, \=tf ],\BbbR n+1) for the strong topology of L2. Then,
it is closed in L2([0, \=tf ],\BbbR n+1) for the weak topology of L2.

Convexity is obvious from the previous statement. Let ( \~Fk(\cdot ))k\in \BbbN \subseteq \~\scrZ \delta such

that \~Fk(\cdot )
L2

 -  - \rightarrow \~F (\cdot ). Therefore, \~F (\cdot ) \in L2([0, \=tf ],\BbbR n+1) and there exists a

subsequence such that \~Fkm
(\cdot ) a.e -  - \rightarrow \~F (\cdot ). Since \~Z\delta 

\beta (t) is closed for the standard

topology of \BbbR n+1, a.e. in t \in [0, \=tf ], we have that \~F (t) = limm\rightarrow \infty \~Fkm
(t) \in 

\~Z\delta 
\beta (t) and the statement follows.

\bullet For every \delta > 0, there exists k\delta \in \BbbN such that if k \geqslant k\delta , then \~Gk(\cdot ) \in \~\scrZ \delta .
Indeed, thanks to assumptions (A1), (A4), mappings f , f0 are globally Lips-

chitz within [ - \Delta , \=tf ]
2 \times B2n

b (0)\times U and, for almost every t \in [0, \=tf ],

inf
z\in \~Z\beta (t)

\| \~Gk(t) - z\| \leqslant \~C
\Bigl( 
\| x\tau k(t) - \=x(t)\| + \| x\tau k(t - \tau 1k ) - \=x(t)\| + \tau 0k

\Bigr) 
,

where \~C > 0 is a suitable constant, which is independent from t. The con-
clusion follows from the uniform convergence of (x\tau k(\cdot ))k\in \BbbN toward \=x(\cdot ).
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Using the closeness of \~\scrZ \delta w.r.t. the weak topology of L2, we infer that \~G(\cdot ) \in \~\scrZ \delta for
every \delta > 0. This implies \~G(\cdot ) \in \cap j\in \BbbN \~\scrZ 1/j \subseteq \~\scrZ 0.

We have obtained that, a.e. in t \in [0, \=tf ], there exist \=u(t) \in U , \=\gamma (t) \geqslant 0 such that

(18) \~G(t) =

\biggl( 
f(t, t, \=x(t), \=x(t), \=u(t)) , f0(t, t, \=x(t), \=x(t), \=u(t)) + \=\gamma (t) ,

\partial \~f

\partial x
(t, t, \=x(t), \=x(t), \=u(t)) ,

\partial \~f

\partial y
(t, t, \=x(t), \=x(t), \=u(t))

\biggr) 
.

Moreover, since U is compact, functions \=u(\cdot ), \=\gamma (\cdot ) can be chosen to be measurable
on [0, \=tf ] using a measurable selection lemma (see, e.g., [27, Lemma 3A, p. 161]).
Combining (18) with (17) provides

\=x(t) = \phi 1(t)1[ - \Delta ,0)(t) + 1[0,\=tf ](t)

\biggl( 
\phi 1(0) +

\int t

0

f(s, s, \=x(s), \=x(s), \=u(s)) ds

\biggr) 
,

which proves that the function \=u(\cdot ) is an admissible control for (OCP).
In order to conclude, it remains to show that \=tf = tf , \=u(\cdot ) = u(\cdot ) and \=x(\cdot ) = x(\cdot ).
First, the previous argument shows that

C\tau k(t
\tau k
f , u\tau k) \rightarrow C0(\=tf , \=u) +

\int \=tf

0

\=\gamma (t) dt.

Thanks to the construction of the mapping \Gamma in section 3.3.1, for every integer k,
there exists a sequence (tkf , vk(\cdot ), yk(\cdot ))k\in \BbbN , respectively, of final times, of admissible
controls and of trajectories for (OCP)\tau k , which converges to (tf , u(\cdot ), x(\cdot )) (for the
evident topologies) as k tends to \infty . Thanks to the optimality of each u\tau k(\cdot ), we have
C\tau k(t

\tau k
f , u\tau k) \leqslant C\tau k(t

k
f , vk) and, since \=\gamma (t) \geqslant 0, passing to the limit gives C0(\=tf , \=u) \leqslant 

C0(tf , u). From assumption (A2), we infer \=tf = tf , \=u(\cdot ) = u(\cdot ), \=x(\cdot ) = x(\cdot ).
Remark that, from the previous argument, the following weak convergences hold:\left\{         

\partial \~f

\partial x
(\cdot , \cdot  - \tau 0k , x\tau k(\cdot ), x\tau k(\cdot  - \tau 1k ), u\tau k(\cdot ))

(L\infty )\ast 

\rightharpoonup 
\partial \~f

\partial x
(\cdot , \cdot , x(\cdot ), x(\cdot ), u(\cdot )) ,

\partial \~f

\partial y
(\cdot , \cdot  - \tau 0k , x\tau k(\cdot ), x\tau k(\cdot  - \tau 1k ), u\tau k(\cdot ))

(L\infty )\ast 

\rightharpoonup 
\partial \~f

\partial y
(\cdot , \cdot , x(\cdot ), x(\cdot ), u(\cdot )) .

(19)

Consider now (OCP)\tau with control and state delays satisfying assumption (C1).
Since the mappings are control-affine, the previous argument simplifies considerably,
because we can transpose the weak convergence directly on controls. Adapting these
proofs to much more general systems is very challenging. We adopt free final time to
show that, for this step, no problems arise if assumption (C2) does not hold.

Let (\tau k)k\in \BbbN = ((\tau 0k , \tau 
1
k , \tau 

2
k ))k\in \BbbN \subseteq (0, \varepsilon 0)

3 be an arbitrary sequence of delays
converging to 0 as k tends to \infty and let (x\tau k(\cdot ), u\tau k(\cdot )) be an optimal solution of
(OCP)\tau k with final time t\tau kf (u\tau k). Since t

\tau k
f (u\tau k) \in [0, b], up to some subsequence, the

sequence of final times (t\tau kf )k\in \BbbN = (t\tau kf (u\tau k))k\in \BbbN converges to some \=tf \in [0, b]. Since
Mf is compact, up to some subsequence, the sequence (x\tau k(t

\tau k
f ))k\in \BbbN \subseteq Mf converges

to a point in Mf .
On the other hand, thanks to assumption (A1), the sequence (u\tau k(\cdot ))k\in \BbbN is bounded

in L2([ - \Delta , \=tf ],\BbbR m). Therefore, up to some subsequence, (u\tau k(\cdot ))k\in \BbbN converges to
some \=u(\cdot ) \in L2([ - \Delta , \=tf ],\BbbR m) for the weak topology of L2. More precisely, it holds
that \=u(\cdot ) \in L\infty ([ - \Delta , \=tf ], U). Indeed, (u\tau k(\cdot ))k\in \BbbN \subseteq L2([ - \Delta , \=tf ], U) and, thanks to
assumption (A1), the set L

2([ - \Delta , \=tf ], U) is closed and convex for the strong topology
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of L2. Therefore, it is closed and convex for the weak topology of L2, from which
\=u(\cdot ) \in L2([ - \Delta , \=tf ], U) \subseteq L\infty ([ - \Delta , \=tf ], U). (The last inclusion still follows from (A1).)

At this step, one crucial result is the weak convergence in L2 of the sequence
(u\tau k(\cdot  - \tau 2k ))k\in \BbbN toward control \=u(\cdot ). To see this, consider the shift operator

S\tau 2 : L2(\BbbR ,\BbbR m) \rightarrow L2(\BbbR ,\BbbR m) :
\Bigl( 
t \mapsto \rightarrow \phi (t)

\Bigr) 
\mapsto \rightarrow 
\Bigl( 
t \mapsto \rightarrow \phi (t - \tau 2)

\Bigr) 
.

Using the dominated convergence theorem, it is clear that, for every \phi (\cdot ) \in L2(\BbbR ,\BbbR m),
it holds that \| S\tau 2\phi  - \phi \| L2 \rightarrow 0 as soon as \tau 2 \rightarrow 0. At this point, extend u\tau k(\cdot ),
u\tau k(\cdot  - \tau 2k ) and \=u(\cdot ) by zero outside of [ - \Delta , \=tf ]. For every \varphi (\cdot ) \in L2(\BbbR ,\BbbR m), one
obtains\int \=tf

0

(u\tau k(t - \tau k) - \=u(t)) \cdot \varphi (t) dt

=

\int 
\BbbR 
(u\tau k(t) - \=u(t)) \cdot 

\Bigl( 
S - \tau 2

k
\varphi 
\Bigr) 
(t) dt+

\int 
\BbbR 
(S\tau 2

k
\=u - \=u)(t) \cdot \varphi (t) dt

(20)

=

\int \=tf

0

(u\tau k(t) - \=u(t)) \cdot \varphi (t) dt+
\int 
\BbbR 
(u\tau k(t) - \=u(t)) \cdot 

\Bigl( 
S - \tau 2

k
\varphi  - \varphi 

\Bigr) 
(t) dt

+

\int 
\BbbR 
(S\tau 2

k
\=u - \=u)(t) \cdot \varphi (t)dt,

which converges to 0, providing the weak convergence in L2 of (u\tau k(\cdot  - \tau 2k ))k\in \BbbN to
\=u(\cdot ).

We can now show that, under assumption (C1), the trajectory arising from control
\=u(\cdot ) is admissible for problem (OCP), proceeding as follows. First, remark that, up
to continuous extensions, for every k, we have

x\tau k(t) = \phi 1(t)1[ - \Delta ,0)(t) + 1[0,\=tf ](t)(21) \biggl( 
\phi 1(0) +

\int t

0

f(s, s - \tau 0k , x\tau k(s), x\tau k(s - \tau 1k ), u\tau k(s), u\tau k(s - \tau 2k )) ds

\biggr) 
.

From this, assumptions (A1), (A4) ensure that (x\tau k(\cdot ))k\in \BbbN is bounded in H1, and
then it converges to some \=x(\cdot ) \in H1([ - \Delta , \=tf ],\BbbR n) for the weak topology of H1. Since
the immersion of H1 into C0 is compact, up to a subsequence, (x\tau k(\cdot ))k\in \BbbN converges
to \=x(\cdot ) \in C0([ - \Delta , \=tf ],\BbbR n) uniformly in [ - \Delta , \=tf ]. Passing to the limit in (21) gives

\=x(t) = \phi 1(t)1[ - \Delta ,0)(t) + 1[0,\=tf ](t)

\biggl( 
\phi 1(0) +

\int t

0

f(s, \=x(s), \=x(s), \=u(s), \=u(s)) ds

\biggr) 
.

In particular, one has \=x(\=tf ) \in Mf , and then, \=u(\cdot ) is admissible for (OCP).
Similarly to the previous case, thanks to the achieved convergences and assump-

tion (C1), one proves that C0(\=tf , \=u) \leqslant C0(tf , u). Therefore, from assumption (A2),
we infer that \=tf = tf , \=u(\cdot ) = u(\cdot ) and \=x(\cdot ) = x(\cdot ) and the conclusion follows.

In this case, we have not only weak convergence of the dynamics and of their
derivatives, but also of optimal controls (under appropriate topologies).

The convergence almost everywhere of the optimal controls can be achieved when
the second option of assumption (C3) holds, and more specifically, when u(\cdot ) assumes
its values at extremal points of U , almost everywhere in [ - \Delta , tf ].

We proceed as follows. The previous computations provide that (u\tau k(\cdot ))k\in \BbbN con-
verges to u(\cdot ) for the weak topology of L2. At this step, the fact that control u(\cdot )
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assumes its values at extremal points of U , almost everywhere in [ - \Delta , tf ], implies
that (u\tau k(\cdot ))k\in \BbbN converges to u(\cdot ) for the strong topology of L1 (see [41, Corollary 1]).
Therefore, up to some subsequence, (u\tau k(\cdot ))k\in \BbbN converges to u(\cdot ), a.e. in [ - \Delta , tf ].

Remark 3.10. Up to some subsequence, thanks to the computations in (20), both
(u\tau k(\cdot  - \tau 2k ))k\in \BbbN and (u\tau k(\cdot + \tau 2k ))k\in \BbbN converge to u(\cdot ), almost everywhere in [ - \Delta , tf ].

We have shown that (tf , x(\cdot ), u(\cdot )) (substituted by (tf , x(\cdot ), \.x(\cdot )) for the case
of pure state delays) is the unique closure point (for the topologies used above)
of (t\tau kf , x\tau k(\cdot ), u\tau k(\cdot ))k\in \BbbN (substituted by (t\tau kf , x\tau k(\cdot ), \.x\tau k(\cdot ))k\in \BbbN for the cases of pure
state delays) for any (sub)sequence of delays (\tau k)k\in \BbbN converging to 0. Then, con-
vergence holds as well for the whole family (t\tau f , x\tau (\cdot ), u\tau (\cdot ))\tau \in (0,\varepsilon 0)3 (substituted by
(t\tau f , x\tau (\cdot ), \.x\tau (\cdot ))\tau \in (0,\varepsilon 0)3 for the cases of pure state delays).

3.3.4. Convergence of optimal adjoint vectors for (OCP)\tau . In what fol-
lows, (x\tau (\cdot ), u\tau (\cdot )) will denote an optimal solution for (OCP)\tau defined in the interval
[ - \Delta , t\tau f ] such that, if needed, it is extended continuously in [ - \Delta , tf ]. From the maxi-
mum principle related to (OCP)\tau , the trajectory x\tau (\cdot ) is the projection of an extremal
(x\tau (\cdot ), p\tau (\cdot ), p0\tau , u\tau (\cdot )) which satisfies (4). From now on, we consider that either as-
sumption (B) or assumption (C) is satisfied, depending on whether we consider pure
state delays or not. The main step of this part consists in showing the convergence of
the Pontryagin cone of (OCP)\tau to the Pontryagin cone of (OCP). Since the definition
of variation vectors relies on Lebesgue points of optimal controls, we need first a set
of converging Lebesgue points. Finally, for the sake of concision, we do not consider
final conditions on the state. Recovering the desired convergence results equipped
with transversality conditions can be easily done by traveling back the arguments
that follow and using assumption (A1).

Lemma 3.11. Consider (OCP)\tau with pure state delays and assume that assump-
tion (B1) holds. For every s \in (0, tf ), Lebesgue point of function \~f(\cdot , x(\cdot ), x(\cdot ), u(\cdot )),
there exists a family (s\tau )(\tau 0,\tau 1)\in (0,\varepsilon 0)2 \subseteq [s, tf ), which are Lebesgue points of function
\~f(\cdot , \cdot  - \tau 0, x\tau (\cdot ), x\tau (\cdot  - \tau 1), u\tau (\cdot )), such that

\~f(s\tau , s\tau  - \tau 0, x\tau (s\tau ), x\tau (s\tau  - \tau 1), u\tau (s\tau ))
\tau \rightarrow 0 -  -  - \rightarrow \~f(s, s, x(s), x(s), u(s)), s\tau 

\tau \rightarrow 0 -  -  - \rightarrow s.

Conversely, consider (OCP)\tau with general delays \tau = (\tau 0, \tau 1, \tau 2) \in (0, \varepsilon 0)
3 and as-

sume that assumption (C3) holds. For every s \in (0, tf ), Lebesgue point of u(\cdot ), there
exists a family (s\tau )\tau \in (0,\varepsilon 0)3 \subseteq [s, tf ), which are Lebesgue points of u\tau (\cdot ), of u\tau (\cdot  - \tau 2)
and of u\tau (\cdot + \tau 2), such that

u\tau (s\tau )
\tau \rightarrow 0 -  -  - \rightarrow u(s) , u\tau (s\tau  - \tau 2)

\tau \rightarrow 0 -  -  - \rightarrow u(s) , u\tau (s\tau + \tau 2)
\tau \rightarrow 0 -  -  - \rightarrow u(s) , s\tau 

\tau \rightarrow 0 -  -  - \rightarrow s.

Proof of Lemma 3.11. We start by proving the first assertion. For this, denote

h\tau (t) = (h\tau 1(t), . . . , h
\tau 
n+1(t)) =

\~f(t, t - \tau 0, x\tau (t), x\tau (t - \tau 1), u\tau (t)),

h(t) = (h1(t), . . . , hn+1(t)) = \~f(t, t, x(t), x(t), u(t)).

We prove that, for s \in (0, tf ) Lebesgue point of h(\cdot ), for every \beta > 0, \alpha s > 0 (such
that s+ \alpha s < tf ), there exists \gamma s,\alpha s,\beta > 0 such that, for every (\tau 0, \tau 1) \in (0, \gamma s,\alpha s,\beta )

2,
there exists s\tau \in [s, s+\alpha s] Lebesgue point of h

\tau (\cdot ) for which \| h\tau (s\tau ) - h(s)\| < \beta . By
contradiction, suppose that there exists s \in (0, tf ) Lebesgue point of h(\cdot ), \alpha s > 0, \beta >
0 such that, for every integer k, there exists \tau k \in (0, 1/k)2\times \{ 0\} and ik \in \{ 1, . . . , n+1\} 
for which, for t \in [s, s+\alpha s] Lebesgue point of h

\tau k(\cdot ), it holds that | h\tau kik (t) - hik(s)| \geqslant \beta .
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From the previous results, the family (h\tau (\cdot ))\tau \in (0,\varepsilon 0)2\times \{ 0\} converges to h(\cdot ) in L\infty 

for the weak star topology. Therefore, for every 0 < \delta \leqslant 1, there exists an integer k\delta 
such that, for every k \geqslant k\delta , it holds that

1

\delta \alpha s

\bigm| \bigm| \bigm| \int s+\delta \alpha s

s

h\tau ki (t) dt - 
\int s+\delta \alpha s

s

hi(t) dt
\bigm| \bigm| \bigm| < \beta 

3

for every i \in \{ 1, . . . , n+ 1\} . We exploit this fact to bound | h\tau kik (t) - hik(s)| by \beta .
First, since s is a Lebesgue point of h(\cdot ), there exists 0 < \delta s,\alpha s

\leqslant 1 such that\bigm| \bigm| \bigm| hi(s) - 1

\delta s,\alpha s\alpha s

\int s+\delta s,\alpha s\alpha s

s

hi(t) dt
\bigm| \bigm| \bigm| < \beta 

3

for i \in \{ 1, . . . , n+ 1\} . On the other hand, there exists an integer k\delta s,\alpha s
such that

1

\delta s,\alpha s
\alpha s

\bigm| \bigm| \bigm| \int s+\delta s,\alpha s\alpha s

s

h\tau ki (t) dt - 
\int s+\delta s,\alpha s\alpha s

s

hi(t) dt
\bigm| \bigm| \bigm| < \beta 

3

for every k \geqslant k\delta s,\alpha s
and every i \in \{ 1, . . . , n + 1\} . Finally, by assumption, we have

that h\tau (\cdot ) is continuous for \tau 0, \tau 1 > 0, and then, for every k \geqslant k\delta s,\alpha s
and every

i \in \{ 1, . . . , n+ 1\} , there exists tk,i \in [s, s+ \delta s,\alpha s
\alpha s] \subseteq [s, s+ \alpha s] such that\bigm| \bigm| \bigm| h\tau ki (tk,i) - 

1

\delta s,\alpha s
\alpha s

\int s+\delta s,\alpha s\alpha s

s

h\tau ki (t) dt
\bigm| \bigm| \bigm| < \beta 

3
.

Then, for every \tau k \in 
\Bigl( 
0, 1

k\delta s,\alpha s

\Bigr) 2
\times \{ 0\} , i \in \{ 1, . . . , n+1\} there exists tk,i \in [s, s+\alpha s]

Lebesgue point of h\tau k(\cdot ) such that | h\tau ki (tk,i) - hi(s)| < \beta , which is a contradiction.
Now, we consider the second statement. The case for which assumption (C3)

ensures that, for every delay \tau , every optimal control u\tau (\cdot ) of (OCP)\tau is continuous
is treated as above because of the weak convergence in L2 of u\tau (\cdot ), of u\tau (\cdot  - \tau 2) and
of u\tau (\cdot + \tau 2). Therefore, assume that u(\cdot ) takes its values at extremal points of U ,
almost everywhere in [ - \Delta , tf ]. Without loss of generality, we extend u\tau (\cdot ) by some
constant vector of U in [t\tau f , b]. Denote

h\tau (t) = (h\tau 1(t), . . . , h
\tau 
3m(t)) =

\Bigl( 
u\tau (t), u\tau (t - \tau 2), u\tau (t+ \tau 2)

\Bigr) 
,

h(t) = (h1(t), . . . , h3m(t)) =
\Bigl( 
u(t), u(t), u(t)

\Bigr) 
and fix s \in (0, tf ), Lebesgue point of h(\cdot ). By contradiction, suppose that there exist
\beta > 0 and \alpha > 0 such that, for every integer k, there exist \tau k = (\tau 0k , \tau 

1
k , \tau 

2
k ) \in (0, 1/k)3

and ik \in \{ 1, . . . , 3m\} for which, for every r \in [s, s+\alpha ] Lebesgue point of h\tau k(\cdot ), it holds
that | h\tau kik (r) - hik(s)| \geqslant \beta . From the arguments of the previous sections, up to some
extension, the family of controls (u\tau (\cdot ))\tau \in (0,\varepsilon 0)3 converges to u(\cdot ) almost everywhere in
[0, tf ] and the same holds true for (u\tau (\cdot  - \tau 2))\tau \in (0,\varepsilon 0)3 and (u\tau (\cdot +\tau 2))\tau \in (0,\varepsilon 0)3 , thanks
to Remark 3.10. Then, (h\tau ki (\cdot ))k\in \BbbN converges a.e. to hi(\cdot ), raising a contradiction.

Lemma 3.11 allows us to prove the following property for Pontryagin cones.

Lemma 3.12. For every \~v \in \~K0(tf ) and every \tau = (\tau 0, \tau 1, \tau 2) \in (0, \varepsilon 0)
3 (as

well as \tau = (\tau 0, \tau 1, 0) \in (0, \varepsilon 0)
2 \times \{ 0\} in the case of pure state delays), there exists

\~w\tau \in \~K\tau (t\tau f ) such that the family ( \~w\tau )\tau \in (0,\varepsilon 0)3 converges to \~v as \tau tends to 0.

Proof of Lemma 3.12. We prove the statement for problems (OCP)\tau with general
state and control delays \tau = (\tau 0, \tau 1, \tau 2). If pure state delay problems (OCP)\tau are
considered, the same guideline can be employed by using Lemma 3.11 and (19).
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Suppose first that \~v = \~v0s,\omega z(s)
(tf ), where z \in U and 0 < s < tf is a Lebesgue

point of u(\cdot ) (recall Remark 3.3). By definition, \~v0s,\omega z(s)
(\cdot ) is the solution of\left\{     

\.\psi (t) =

\biggl( 
\partial \~f

\partial x
(t, t, x(t), x(t), u(t), u(t)) +

\partial \~f

\partial y
(t, t, x(t), x(t), u(t), u(t))

\biggr) 
\psi (t),

\psi (s) = \~f(s, s, x(s), x(s), z, z) - \~f(s, s, x(s), x(s), u(s), u(s)).

(22)

From Lemma 3.11, there exists a family (s\tau )\tau \in (0,\varepsilon 0)3 \subseteq [s, tf ), which are Lebesgue
points of u\tau (\cdot ), of u\tau (\cdot  - \tau 2) and of u\tau (\cdot + \tau 2), such that

u\tau (s\tau )
\tau \rightarrow 0 -  -  - \rightarrow u(s) , u\tau (s\tau  - \tau 2)

\tau \rightarrow 0 -  -  - \rightarrow u(s) , u\tau (s\tau + \tau 2)
\tau \rightarrow 0 -  -  - \rightarrow u(s) , s\tau 

\tau \rightarrow 0 -  -  - \rightarrow s.

This allows us to consider \~v\tau 
s\tau ,\omega 

 - 
z (s\tau )

(\cdot ) and \~v\tau 
s\tau +\tau 2,\omega +

z (s\tau )
(\cdot ), solutions of (13) with

initial data provided, respectively, by (11) and (12). We denote

\~w\tau 
s\tau ,z(t) = \~v\tau 

s\tau ,\omega 
 - 
z (s\tau )

(t) + \~v\tau 
s\tau +\tau 2,\omega +

z (s\tau )
(t).

Since we consider affine problems (OCP)\tau , Lemma 3.11 gives

lim
\tau \rightarrow 0

\Bigl( 
\omega  - 
z (s\tau ) + \omega +

z (s\tau )
\Bigr) 
= \~f(s, s, x(s), x(s), z, z) - \~f(s, s, x(s), x(s), u(s), u(s)).

Moreover, from the results of the previous sections, we have in particular

\partial \~f

\partial x
(\cdot , \cdot  - \tau 0, x\tau (\cdot ), x\tau (\cdot  - \tau 1), u\tau (\cdot ), u\tau (\cdot  - \tau 2))

L2

\rightharpoonup 
\partial \~f

\partial x
(\cdot , \cdot , x(\cdot ), x(\cdot ), u(\cdot ), u(\cdot )),

\partial \~f

\partial y
(\cdot , \cdot  - \tau 0, x\tau (\cdot ), x\tau (\cdot  - \tau 1), u\tau (\cdot ), u\tau (\cdot  - \tau 2))

L2

\rightharpoonup 
\partial \~f

\partial y
(\cdot , \cdot , x(\cdot ), x(\cdot ), u(\cdot ), u(\cdot )).

By continuous dependence w.r.t initial data for dynamical systems and since t\tau f con-
verges to tf , the family ( \~w\tau )\tau \in (0,\varepsilon 0)3 = ( \~w\tau 

s\tau ,z(t
\tau 
f ))\tau \in (0,\varepsilon 0)3 converges to \~v as \tau \rightarrow 0.

If \~v \in \partial \~K0(tf ), the result above is used on converging sequences in Int \~K0(tf ).

For the last part of the proof, an iterative use of Lemma 3.12 is made. It is at this
step that, for problems with general delays \tau = (\tau 0, \tau 1, \tau 2), assumption (C2) of fixed
final time becomes instrumental to derive the convergence related to adjoint vectors.
Indeed, problems arise when one tries to make the final condition on the Hamiltonian
(7) converge to the transversality condition related to problem (OCP)\tau . For the sake
of concision, in this context, we focus only on problems (OCP)\tau with general delays
\tau = (\tau 0, \tau 1, \tau 2). The case of pure state delays is similar. (We refer to [22, Proposition
2.15] for details.) Assumptions (B) and (C) are implicitly used.

We first prove that the following statements hold true:
\bullet For every \tau = (\tau 0, \tau 1, \tau 2) \in (0, \varepsilon 0)

3, every extremal lift (x\tau (\cdot ), p\tau (\cdot ), p0\tau , u\tau (\cdot ))
of any solution of (OCP)\tau is normal.

\bullet The set of final adjoint vectors \{ p\tau (tf ) : \tau \in (0, \varepsilon 0)
3\} is bounded.

We consider the first statement proceeding by contradiction. Assume that, for
every integer k, there exist \tau k = (\tau 0k , \tau 

1
k , \tau 

2
k ) \in (0, 1/k)3 and a solution (x\tau k(\cdot ), u\tau k(\cdot ))

of (OCP)\tau k having an abnormal extremal lift (x\tau k(\cdot ), p\tau k(\cdot ), 0, u\tau k(\cdot )). Set \psi \tau k =
p\tau k

(tf )

\| p\tau k
(tf )\| for every integer k. Therefore, we have

\bigl\langle 
(\psi \tau k , 0), \~v\tau k

\bigr\rangle 
\leqslant 0 for every \~v\tau k \in 

\~K\tau k(tf ) and every integer k. Up to a subsequence, the sequence (\psi \tau k)k\in \BbbN \subseteq Sn - 1
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converges to some unit vector \psi \in \BbbR n. Passing to the limit, by using the previous
results, we infer that

\bigl\langle 
(\psi , 0), \~v

\bigr\rangle 
\leqslant 0 for every \~v \in \~K0(tf ). Thanks to assumption

(C2), (x(\cdot ), u(\cdot )) has an abnormal extremal lift. This contradicts assumption (A3).
For the second statement, again by contradiction, assume that there exists a

sequence (\tau k = (\tau 0k , \tau 
1
k , \tau 

2
k ))k\in \BbbN \subseteq (0, \varepsilon 0)

3 converging to 0 such that \| p\tau k(tf )\| tends
to +\infty . As defined above, the sequence (\psi \tau k)k\in \BbbN belongs to Sn - 1, and then, up
to some subsequence, it converges to some unit vector \psi . On the other hand, by
construction, the inequality

\bigl\langle 
(p\tau k(tf ), - 1), \~v\tau k

\bigr\rangle 
\leqslant 0 holds for every \~v\tau k \in \~K\tau k(tf ) and

every integer k. Dividing by \| p\tau k(tf )\| and passing to the limit, it follows that the
solution (x(\cdot ), u(\cdot )) has an abnormal extremal lift, which again contradicts assumption
(A3).

Now, let \psi be a closure point of \{ p\tau (tf ) : \tau \in (0, \varepsilon 0)
3\} and (\tau k = (\tau 0k , \tau 

1
k , \tau 

2
k ))k\in \BbbN \subseteq 

(0, \varepsilon 0)
3 be a sequence converging to 0 such that p\tau k(tf ) tends to \psi . Using the con-

tinuous dependence w.r.t. initial data and the established convergence properties, we
infer that (p\tau k(\cdot ))k\in \BbbN converges uniformly to the solution z(\cdot ) of

\.z(t) =  - \partial H
\partial x

(t, t, x(t), x(t), z(t), - 1, u(t), u(t)) - \partial H

\partial y
(t, t, x(t), x(t), z(t), - 1, u(t), u(t))

with z(tf ) = \psi . Moreover, since
\bigl\langle 
(p\tau k(tf ), - 1), \~v\tau k

\bigr\rangle 
\leqslant 0, for every \~v\tau k \in \~K\tau k(tf )

and every integer k, passing to the limit, thanks to the previous results, we obtain\bigl\langle 
(\psi , - 1), \~v

\bigr\rangle 
\leqslant 0, for every \~v \in \~K0(tf ). It follows that (x(\cdot ), z(\cdot ), - 1, u(\cdot )) is a normal

extremal lift of (OCP). Using assumption (A3), we finally obtain z(\cdot ) = p(\cdot ) in [0, tf ].
Theorem 2.1 is proved.

4. Conclusions and perspectives. In this paper, we provided sufficient condi-
tions under which Pontryagin extremals related to nonlinear optimal control problems
with delays are continuous (under appropriate topologies) w.r.t. delays.

It would be interesting to extend this result to problems with more general con-
straints, such as control and state constraints. This would require us to analyze the
proof of the maximum principle with state and control constraints via sliding or v-
variations (see, e.g., [13]), to exploit the continuous dependence w.r.t. parameters for
implicit function theorems. (Ekeland-type approaches probably fail because of con-
tinuous dependence.) Furthermore, in the case of control and state delays, the proof
that we provided needs to consider control-affine dynamics and costs and fixed final
time. The extension to more general systems is open.

Furthermore, in this paper we have considered constant delays. One could con-
sider more general delays that are functions of time and state. This is motivated by
the fact that, in the case of delays depending on the time and the state, maximum
principle formulations still exist (see, e.g., [4]). Therefore, extending our main result
requires to consider the C0-topology on the delay function t \mapsto \rightarrow \tau (t, x(t)).

Finally, as briefly explained in section 2.4, our result is in particular motivated by
numerical implementations of the shooting method, in combination with homotopies
on the delay parameters, thus providing an interesting alternative to classically used
direct methods. Numerical issues will be addressed in a forthcoming paper.

Appendix A. Proof of of Lemma 3.4. The proof goes by induction. We
develop computations for j = 1. The inductive step goes in the same way as the usual
case (see, e.g., [32]).

Let tj < t \leqslant t\tau f be a Lebesgue point of u\tau (\cdot ), u\tau (\cdot  - \tau 2). First, let us show that

(23) \~x\pi \tau (t) - \~x\tau (t) = \eta 1 \~w
\tau 
t1,u1

(t)+o(\eta 1) = \eta 1

\Bigl( 
\~v\tau 
t1,\omega 

 - 
u1

(t1)
(t)+\~v\tau 

t1+\tau 2,\omega +
u1

(t1)
(t)
\Bigr) 
+o(\eta 1).
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We consider the case t \geqslant t1 + \tau 2. (The case t < t1 + \tau 2 is similar, but easier.) We
have

\| \~x\pi \tau (t) - \~x\tau (t) - \eta 1 \~w
\tau 
t1,u1

(t)\| \leqslant \| \~x\pi \tau (t1 + \tau 2) - \~x\tau (t1 + \tau 2) - \eta 1 \~w
\tau 
t1,u1

(t1 + \tau 2)\| 

+

\bigm\| \bigm\| \bigm\| \bigm\| \int t

t1+\tau 2

\Bigl( 
\~f(s, s - \tau 0, \~x\pi \tau (s), \~x

\pi 
\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2))

 - \~f(s, s - \tau 0, \~x\tau (s), \~x\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2)) - \eta 1 \.\~w\tau 
t1,u1

(s)
\Bigr) 
ds

\bigm\| \bigm\| \bigm\| \bigm\| .
By exploiting the facts that t1 is a Lebesgue point of u\tau (\cdot ), u\tau (\cdot  - \tau 2) and of u\tau (\cdot +\tau 2)
and that \~x\pi \tau (\cdot ) converges uniformly to \~x\tau (\cdot ), expanding the extended dynamics at
second order, the first term of the expression above can be bounded as follows:

\| \~x\pi 
\tau (t1 + \tau 2) - \~x\tau (t1 + \tau 2) - \eta 1 \~w

\tau 
t1,u1

(t1 + \tau 2)\| 

\leqslant 

\bigm\| \bigm\| \bigm\| \bigm\| \int t1

t1 - \eta 1

\Bigl( 
\~f(s, s - \tau 0, \~x\pi 

\tau (s), \~x
\pi 
\tau (s - \tau 1), u1, u\tau (s - \tau 2))

 - \~f(s, s - \tau 0, \~x\tau (s), \~x\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2))
\Bigr) 
ds - \eta 1\omega 

 - 
u1
(t1)

\bigm\| \bigm\| \bigm\| \bigm\| 
+

\bigm\| \bigm\| \bigm\| \bigm\| \int t1+\tau 2 - \eta 1

t1

\Bigl( 
\~f(s, s - \tau 0, \~x\pi 

\tau (s), \~x
\pi 
\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2))

 - \~f(s, s - \tau 0, \~x\tau (s), \~x\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2)) - \eta 1 \.\~w\tau 
t1,u1

(s)
\Bigr) 
ds

\bigm\| \bigm\| \bigm\| \bigm\| 
+

\bigm\| \bigm\| \bigm\| \bigm\| \int t1+\tau 2

t1+\tau 2 - \eta 1

\Bigl( 
\~f(s, s - \tau 0, \~x\pi 

\tau (s), \~x
\pi 
\tau (s - \tau 1), u\tau (s), u1)

 - \~f(s, s - \tau 0, \~x\tau (s), \~x\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2)) - \eta 1 \.\~w\tau 
t1,u1

(s)
\Bigr) 
ds - \eta 1\omega 

+
u1
(t1)

\bigm\| \bigm\| \bigm\| \bigm\| 
\leqslant 

\bigm\| \bigm\| \bigm\| \bigm\| \int t1

t1 - \eta 1

\Bigl( 
\~f(s, s - \tau 0, \~x\tau (s), \~x\tau (s - \tau 1), u1, u\tau (s - \tau 2))

 - \~f(s, s - \tau 0, \~x\tau (s), \~x\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2))
\Bigr) 
ds - \eta 1\omega 

 - 
u1
(t1)

\bigm\| \bigm\| \bigm\| \bigm\| + o(\eta 1)

+

\int t1+\tau 2 - \eta 1

t1

\bigm\| \bigm\| \bigm\| \bigm\| \partial \~f

\partial x
(s, s - \tau 0, \~x\tau (s), \~x\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2))

\cdot 
\Bigl( 
\~x\pi 
\tau (s) - \~x\tau (s) - \eta 1 \~w

\tau 
t1,u1

(s)
\Bigr) \bigm\| \bigm\| \bigm\| \bigm\| ds

+

\int t1+\tau 2 - \eta 1

t1

\bigm\| \bigm\| \bigm\| \bigm\| \partial \~f

\partial y
(s, s - \tau 0, \~x\tau (s), \~x\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2))

\cdot 
\Bigl( 
\~x\pi 
\tau  - \~x\tau  - \eta 1 \~w

\tau 
t1,u1

\Bigr) 
(s - \tau 1)

\bigm\| \bigm\| \bigm\| \bigm\| ds
+

\int t1+\tau 2 - \eta 1

t1

\int 1

0

\bigm\| \bigm\| \bigm\| \bigm\| d2 \~f\bigl( s, s - \tau 0, (\sigma \~x\tau +(1 - \sigma )\~x\pi 
\tau )(s), (\sigma \~x\tau +(1 - \sigma )\~x\pi 

\tau )(s - \tau 1), u\tau (s), u\tau (s - \tau 2)
\bigr) \bigm\| \bigm\| \bigm\| \bigm\| \cdot 

\cdot 
\biggl( 
\| \~x\pi 

\tau (s) - \~x\tau (s)\| 2+\| \~x\pi 
\tau (s - \tau 1) - \~x\tau (s - \tau 1)\| 2+2\| \~x\pi 

\tau (s) - \~x\tau (s)\| \| \~x\pi 
\tau (s - \tau 1) - \~x\tau (s - \tau 1)\| 

\biggr) 
d\sigma ds

+ \eta 1

\bigm\| \bigm\| \bigm\| \bigm\| \int t1

t1 - \eta 1

\.\~w\tau 
t1,u1

(s+ \tau 2)ds

\bigm\| \bigm\| \bigm\| \bigm\| 
+

\bigm\| \bigm\| \bigm\| \bigm\| \int t1

t1 - \eta 1

\Bigl( 
\~f(s+ \tau 2, s+ \tau 2  - \tau 0, \~x\tau (s+ \tau 2), \~x\tau (s+ \tau 2  - \tau 1), u\tau (s+ \tau 2), u1)

 - \~f(s+\tau 2, s+\tau 2 - \tau 0, \~x\tau (s+\tau 2), \~x\tau (s+\tau 2 - \tau 1), u\tau (s+\tau 2), u\tau (s))
\Bigr) 
ds - \eta 1\omega 

+
u1
(t1)

\bigm\| \bigm\| \bigm\| \bigm\| +o(\eta 1).
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Therefore, by bounding the derivatives of the extended dynamics, we have

\| \~x\pi \tau (t1 + \tau 2) - \~x\tau (t1 + \tau 2) - \eta 1 \~w
\tau 
t1,u1

(t1 + \tau 2)\| 

\leqslant \~C1

\int t1+\tau 2 - \eta 1

t1 - \tau 1

\| \~x\pi \tau (s) - \~x\tau (s) - \eta 1 \~w
\tau 
t1,u1

(s)\| ds+ o(\eta 1),

where \~C1 \geqslant 0 is a constant. With the same technique, we obtain\bigm\| \bigm\| \bigm\| \bigm\| \int t

t1+\tau 2

\Bigl( 
\~f(s, s - \tau 0, \~x\pi \tau (s), \~x

\pi 
\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2))

 - \~f(s, s - \tau 0, \~x\tau (s), \~x\tau (s - \tau 1), u\tau (s), u\tau (s - \tau 2))

 - \eta 1 \.\~w\tau 
t1,u1

(s)
\Bigr) 
ds

\bigm\| \bigm\| \bigm\| \bigm\| \leqslant \~C2

\int t

t1+\tau 2 - \tau 1

\| \~x\pi \tau (s) - \~x\tau (s) - \eta 1 \~w
\tau 
t1,u1

(s)\| ds+ o(\eta 1),

where \~C2 \geqslant 0 is another constant. Coupling the two last results with Gr\"onwall's
inequality, (23) follows. The conclusion comes from (23) and the fact that t is a
Lebesgue point of u\tau (\cdot ) and of u\tau (\cdot  - \tau 2).

Appendix B. Proof of Lemma 3.8. We start by recalling the following
standard result (see, e.g., [1]).

Let L : \BbbR j \rightarrow \BbbR n be a linear mapping such that L(\BbbR j
+) = \BbbR n. Then the following

hold:
\bullet j > n+ 1 and (0,+\infty )j \cap ker L is nontrivial.
\bullet There exists S \subseteq \BbbR j , dim(S) = n, such that L| S : S \rightarrow \BbbR n is an isomorphism.

Applying this result to L = \partial F
\partial x (0, 0) yields the existence of a nontrivial vector

v \in (0,+\infty )j , such that L(v) = 0, and of a n-dimensional subspace S \subseteq \BbbR j such that
the restriction L| S : S \rightarrow \BbbR n is an isomorphism.

For every \varepsilon \in \BbbR k
+ and every y, u \in \BbbR n, set \Phi (\varepsilon , y, u) = u  - F (\varepsilon , L| S - 1

(u)) + y.
This mapping is continuous and it holds that \Phi (0, 0, 0) = 0. Fix \varepsilon \in \BbbR k

+ at which F
is almost everywhere strictly differentiable. Then, for every y \in \BbbR n, one has
(24)

\Phi (\varepsilon , y, u1) - \Phi (\varepsilon , y, u2) =

\biggl( 
Id - \partial F

\partial x
(\varepsilon , 0) \circ L| S - 1

\biggr) 
(u1  - u2) + \| u1  - u2\| G\varepsilon (u1, u2),

where G\varepsilon (u1, u2) = g\varepsilon (L| S - 1
(u2), L| S - 1

(u1)) \rightarrow 0 as soon as (u1, u2)
a.e. -  - \rightarrow 0. From

the continuity property of \partial F
\partial x (\varepsilon , 0) on a dense subset, there exists \varepsilon 0 \in \BbbR k

+ and a dense

subset E \subseteq [0, \varepsilon 0)
k, such that for every \varepsilon \in E it holds that

\bigm\| \bigm\| \bigm\| Id - \partial F
\partial x (\varepsilon , 0) \circ L| S

 - 1
\bigm\| \bigm\| \bigm\| \leqslant 

1
4 , and there exists r\varepsilon > 0 such that

\| G\varepsilon (u1, u2)\| \leqslant 
1

4
for almost all u1 , u2 \in Br\varepsilon (0).

On the other hand, by assumption, the remainder in expression (24) converges to
0 uniformly w.r.t. \varepsilon on a dense subset. Therefore, up to reducing E, gathering the
previous results with (24), we infer the existence of r > 0 such that

\| \Phi (\varepsilon , y, u1) - \Phi (\varepsilon , y, u2)\| \leqslant 
1

2
\| u1 - u2\| for every \varepsilon \in E and almost every u1, u2 \in Br(0).

From this last result and the continuity of mapping F , for every \varepsilon \in [0, \varepsilon 0)
k and

y \in \BbbR n, the mapping u \mapsto \rightarrow \Phi (\varepsilon , y, u) is 1
2 -Lipschitzian on an open neighborhood of 0.
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At this step, for every \delta > 0, denote B\delta = S \cap B\delta (0) and choose \delta > 0 small
enough such that v + B\delta \subseteq (0,+\infty )j . The set U\delta = L(B\delta ) is a closed neighborhood
of 0 in \BbbR n. With the same argument as above, it is not difficult to show that if \delta , \| \varepsilon \| ,
and \| y\| are small enough, then the mapping u \mapsto \rightarrow \Phi (\varepsilon , y, u) maps U\delta into itself.

Lemma 3.8 follows from the application of the usual Banach fixed point theorem
to the contraction mapping u \mapsto \rightarrow \Phi (\varepsilon , y, u) with parameters (\varepsilon , y).
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